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Abstract: The World Meteorological Organization (WMO) cautions that 2024 is poised to become the warmest year on record, fueled 

by the El Niño phenomenon. This persistent trend, continuing from 2023, is projected to trigger droughts, off-season tropical storms, 

and rising sea levels, imperiling 40% of the global population residing within 100 kilometers of coastlines. Historical data reveal 

alarming sea level rises: 1.7 cm/year in the 20th century, 3.1cm/year in its final two decades, and 3.7±0.5 cm/year since 2006, primarily 

driven by global warming, glacier melting, and thermal expansion. This study introduces a statistical methodology linking sea level rise 

with temperature and pollution time series. Notable insights include: sea level exhibits a constant, positive trend over time, with 48% 

annual growth following La Niña events. Global temperature increases sea level with a three-month delay. CO2 levels impact sea levels 

with a similar three-month lag. GARCH modeling reveals volatile sea level behavior. By 2050, the model predicts a 31 cm sea level rise. 

This research underscores, the effectiveness of statistical methodologies in understanding natural phenomena and making predictions, 

as well as the urgent need for climate action to mitigate the impacts of rising sea levels and associated climate risks. 

 

Key words: sea level, SARIMA, transfer function, GARCH 
 

1. Introduction   

Sea level measurement is crucial for understanding 

the impacts of climate change, managing coastal 

resources, and ensuring the safety of communities 

worldwide. Rising sea levels pose significant threats 

to coastal ecosystems, infrastructure, and human 

settlements. In particular, sea level rise is a key 

indicator of global warming, helping scientists track 

the effects of climate change [1]. Also, accurate sea 

level data informs coastal management and flood 

protection strategies, safeguarding communities and 

infrastructure [2]. With respect to ecosystem 

conservation, changes in it, affect coastal ecosystems, 

including salt marshes, mangroves, and coral reefs, 

which support biodiversity and fisheries [3]. 

Rising sea levels threaten the livelihoods and homes 

of millions, particularly in low-lying coastal areas, 

which means human migration and displacement [4]. 
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Also, sea level rise affects tourism, fisheries, and 

coastal development, with estimated annual costs 

exceeding $100 billion [5]. There are several possible 

causes of rising sea levels, some of them are thermal 

expansion (as the Earth’s atmosphere warms, oceans 

expand and contract less), contributing to sea level 

rise, glacier melting, large eruptions, which can cause 

temporary sea level changes [1] and human activities 

which produce CO2 emissions, thought mining and 

industrial activities [6, 7]. Therefore, this research was 

motivated to analyze the behavior of monthly sea level 

from December 1992 to November 2022 as well as the 

effect of global and ocean temperature along with CO2, 

which reflects the human activities on the sea level. 

2. Material and Methods 

To quantify the impacts of human activities, 

specifically CO2 emissions, global temperature, and 

ocean temperature, on sea level rise, this study employs 

seasonal ARIMA, transfer function, and GARCH 

models. These time series models, introduced by Box 
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and Jenkins [8], offer a streamlined alternative to more 

complex geophysical models, such as Ocean General 

Circulation Models (OGCMs) [9] and geoid models 

[10]. 

2.1 Seasonal Multiplicative ARIMA Model 

A multiplicative Seasonal ARIMA model is denoted 

as (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)[𝑠],  where p: Order of the 

autoregressive (AR) component, d: Order of 

non-seasonal differencing, q: Order of the moving 

average (MA) component, P: Order of the seasonal 

autoregressive (SAR) component, D: Order of seasonal 

differencing, Q: Order of the seasonal moving average 

(SMA) component and s: Seasonal periodicity. The 

general form of the multiplicative seasonal ARIMA 

model is: 

𝛷𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡

= 𝛩𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝑎𝑡 

where: 𝛷𝑃(𝐵𝑠): Seasonal autoregressive polynomial 

of order 𝑃, 𝜙𝑝(𝐵):  Non-seasonal autoregressive 

polynomial of order p, 𝜃𝑞(𝐵): Non-seasonal moving 

average polynomial of order 𝑞 , 𝛩𝑄(𝐵𝑠):  Seasonal 

moving average polynomial of order 𝑄, 𝐵: Backshift 

operator, 𝑦𝑡: dependent time series and 𝑎𝑡: white noise 

error term. 

2.2 Transfer Function Model 

A Box-Jenkins transfer function model (ARIMAX): 

𝑦𝑡 =  𝑐 + ∑ 𝜙𝑖𝑦𝑡−𝑖

𝑝

𝐼=1

+ ∑ 𝜃𝑗𝑎𝑡−𝑗

𝑞

𝑗=1

+ ∑ 𝛽𝑘𝑥𝑡−𝑘

𝑏

𝑘=0

 

+ 𝑎𝑡 

where: 

𝑦𝑡: Dependent time series at time t. 

𝑥𝑡: Exogenous time series at time t. 

𝑐: Constant term. 

𝜙𝑖: Autoregressive coefficients (AR). 

𝜃𝑗: Moving average coefficients (MA). 

𝛽𝑘: Coefficients of the exogenous variable. 

𝑎𝑡: White noise error term. 

𝑝: Order of the autoregressive component. 

𝑞: Order of the moving average component. 

𝑏: Maximum lag of the exogenous variable. 

is used to model the relationship between a dependent 

time series and an exogenous time series. 

2.3 GARCH Model 

Generalized Autoregressive Conditional 

Heteroskedasticity Model (GARCH), is a statistical 

framework used to analyse and forecast financial time 

series that exhibit volatility clustering. These models 

capture the phenomenon of volatility clustering, where 

large variable of interest movements are followed by 

large variable of interest movements, and small 

variable of interest movements are followed by small 

variable of interest movements.  

In this particular case, a GARCH model is used to 

estimate the volatility of the error term of an ARIMA 

model, which gives an idea of the variability that sea 

level presents over time. A GARCH model incorporates 

autoregressive components of the variance (𝜎2) , 

which captures the persistence of volatility, and square 

error components (𝑎𝑡
2),  which represents random 

deviations. The 𝐺𝐴𝑅𝐶𝐻(𝑞, 𝑝) model is defined as:  

𝑎𝑡 = 𝜇 + 𝜖𝑡 

𝜖𝑡 = 𝜎𝑡𝑧𝑡 

𝜎𝑡
2 =  𝛼0  + ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

𝑦𝑡: value of the series at time t. 

𝜇: mean of the series. 

𝜖𝑡: error term at time t. 

𝜎𝑡
2: conditional variance at time t. 

𝑧𝑡: white noise term (typically assumed to follow a 

standard normal distribution). 𝛼0, 𝛼𝑖, and 𝛽𝑗  are the 

parameters of the model.  

3. Results and Discussion 

3.1 Series Description 

The data were obtained from the National Oceanic 

and Atmospheric Administration (NOAA) by three 

distinct satellites from December 1992 to November 
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2022. The satellites were TOPEX/Poseidon, Jason-1, 

Jason-2, and Jason-3 [2]. These measurements were 

averaged to obtain monthly global sea level increase.  

Descriptive statistics of 360 observations from 

December 1992 to November 2022 showed almost 

symmetrical distribution given that the median was 

similar to the mean (Table 1). Sea level data consisted 

of measured changes in centimetres of the sea surface 

level, compared to the average sea level measured from 

1993 to 2008. This period serves as a stable reference 

period, minimizing the impact of interannual 

variability and climate patterns like El Niño-Southern 

Oscillation (ENSO), also this period coincided with the 

launch of satellite altimetry missions 

(TOPEX/Poseidon, Jason-1, and Jason-2), providing 

consistent and accurate sea level data [2]. The 

1993-2008 average establishes a climate normal, 

allowing for comparison of subsequent sea level 

changes [2]. Global and ocean temperatures were taken 

as well from NOAA [2]. Researchers often use the 

period from 1910 to 1990 as a reference for measuring 

exceedance of global or oceanic temperature, because 

early 20th-century marks the beginning of widespread 

temperature records, providing a century-long 

perspective. 1910 is relatively close to the 

pre-industrial era (1850-1900), allowing researchers to 

study climate change since the Industrial Revolution, 

which had less anthropogenic influence. Besides, 

period 1910-1990 was relatively stable, with minimal 

volcanic eruptions and solar variability and global 

temperature records [11, 12]. 

 

Table 1  Descriptive statistics of the variables (December 1992 to November 2022). 

Variable Mean Median Min Max 
Standard 

Deviation 
Skewness Kurtosis 

𝑌𝑡:  Sea level (cm) 2.42 2.06 -25.98 84.28 2.74 0.29 -0.97 

𝑋1𝑡: Global temperature (C) 0.67 0.67 0.07 1.35 0.23 0.13 -0.16 

𝑋2𝑡: Ocean temperature (C) 0.50 0.50 0.18 0.87 0.15 0.18 -0.78 

𝑋3𝑡: CO2 (ppm) 384.73 383.65 354.44 418.58 18.08 0.16 -1.15 
 

3.2 Structural Changes of Sea Level 

Sea Level Variations from December 1992 to 

November 2022, relative to the 1993-2008 mean (Fig. 

1A), shows five level changes. These changes in sea 

level increases and become more frequent as time goes 

long. The duration of them were 9 (December 

1992-June 2001), 7 (July 2001-August 2008), 6 

(September 2008-July 2014), 4 (August 2014-August 

2018) and 4 years (September 2018-November 2022). 

Respective mean sea levels were: -0.7160032 

(December 1992-June 2001), 1.4037035 (July 

2001-August 2008), 3.0893561 (September 2008-July 

2014), 5.2148205 (August 2014-August 2018) and 

6.8581797 (September 2018-November 2022). Fig. 2B, 

also shows three slopes change: 0.02 (December 

1992-December 2010), 0.05 (January 2011-December 

2016) and 0.04 (January 2017-November 2022). 

Interestingly, the latter two slopes exhibit a more 

pronounced incline compared to the first, indicating an 

acceleration in the rate of sea level change over time. 

The results mean that sea level presented a positive and 

constant trend over time, with a growth rate of 48% (= 

0.04*12*100) annually and that after the appearance of 

the phenomenon known as “La Niña”, although a 

decline was experienced, subsequently the slope of sea 

level increased. 

3.3 Train and Test Data 

Sea level original data was divided in train and test 

data in order to test the quality of the ARIMA 

modelling. Train set included data from December 

1992 to November 2016, and from December 2016 to 

November 2022 for the test set. Model (1) shows the 

SARIMA model adjusted to train data.  
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Fig. 1  (A) Sea level increase, and (B) slope of sea level increase, derived from a stable reference period spanning 1993 to 

2008. 

 

(1 + 0.33𝐵12)(1 + 0.70𝐵)(1 − 𝐵12)(1 − 𝐵) 𝑦𝑡 = 𝑎𝑡 

𝑎𝑡   ~𝑁(0,0.087)  

𝐵𝐼𝐶 = 128.15                           (1) 

Model (1) took into account the stochastic trend and 

the seasonal behaviour of the series and suggested that 

sea level time series exhibits a moderate positive yearly 

autocorrelation and strong positive autocorrelation at 

lag 1. It is noteworthy, that 95 % confidence level (C.L.) 

of this model contains the test time series (Fig. 2). As 

was expected, 95% (C.L.) gets wider as time goes by. 

Fig. 2, also shows the annual sea level mean of 3.7 

±0.5 cm, which was estimated by the IPCC [1]. This 

mean was estimated from monthly data from 2006 to 

2018. Therefore, SARIMA(1,1,0)(1,1,0) [12] was good 

model to represent the seasonal increase of sea level. 

 
Fig. 2  Seasonal ARIMA forecast and test data from December 2022. 
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3.4 Volatility Analysis of Sea Level 

An analysis of the residuals of model (1) detected an 

additive outlier in the observation 49 (December 1996), 

which coincided with a major EL Niño [3]. This outlier 

was incorporated in model 2 as:  

(1 + 0.35𝐵12 )(1 − 0.70𝐵)(1 − 𝐵12 )(1 − 𝐵) 𝑦𝑡

= −1.17𝐼𝑡 + 𝑎𝑡 

𝑎𝑡  ~𝑁(0,0.085)                     (2) 

Volatility clustering and leptokurtosis presented in 

the squared residuals of model (2) were taken into 

account by the GARCH (q = 1, p = 0) model:  

𝜎𝑡
2 = 0.0012 + 0.55𝜖𝑡

2            (3) 

with a skew parameter = 8.27 and skew normal 

distribution (Fig. 3A). Constant term (0.0012): 

represents the minimum volatility level, indicating a 

baseline risk or uncertainty. ARCH term (0.55𝜖𝑡
2 ) 

measured the impact of past errors (𝜖𝑡) on current 

variability. A high coefficient (0.55) indicates strong 

persistence of shocks, meaning past large errors lead to 

increased volatility. The absence of a GARCH term (p 

= 0) suggested that lagged volatility does not directly 

influence current volatility. Skew Parameter (8.27) 

indicates significant skewness in the distribution, with 

a positive value suggesting right-skewness and 

substantial asymmetry to the right, this implies more 

extreme increases of sea level in the long term. The 

residuals of model (3) did not rejected 𝐻𝑜:  Residuals 

has normal distribution, with a p-value = 0.12 (Fig. 3B). 

This GARCH model provides valuable insights into the 

underlying volatility dynamics and distributional 

characteristics of the sea level, enabling more informed 

decision-making. By combining ARIMA and GARCH 

models, this approach accounts for linear (SARIMA) 

and nonlinear patterns (GARCH). 

 

Fig. 3  (A) Squared residuals of model (2) in black and the GARCH(q = 1, p = 0), which is model (3) adjusted to the squared 

residuals of model (2) in red color. (B) Residuals of model 3. 
 

3.5 Transfer Function Analysis 

The four time series (from December 1992 to 

November 2022) presented an increase trend (Fig. 4). 

Therefore, all the time series contained an integrated 

term of order 1 (𝑑 = 1). Besides, sea level (𝑌𝑡) and 

𝐶𝑂2  (𝑌3𝑡)  showed a seasonal behaviour (Fig. 4), 

therefore seasonal terms were included in these models 

(Table 2). We observed that global temperature (𝑋1𝑡) 

and ocean temperature (𝑋2𝑡) depend of the previous 

three months and one month, respectively. In other 
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words, global temperature is more persistent than 

ocean temperature. 

We employed individual transfer functions to model 

the relationships between sea level (𝑌𝑡) and its drivers: 

global temperature (𝑋1𝑡), ocean temperature (𝑋2𝑡), and 

CO2 (𝑋3𝑡).  This approach allowed for: clearer 

interpretation of the physical mechanisms underlying 

each relationship, avoidance of multicollinearity issues, 

capture of unique dynamics between each input and 

output, more parsimonious models and better 

goodness-of-fit compared to a combined model. 

 
Fig. 4  (A) Sea level time series. (B) Global temperature. (C) Ocean temperature. (D) 𝑪𝑶𝟐. Data are from December 1992 to 

November 2022. 
 

Cross correlation functions of pairs of residuals 

series: (𝑌𝑡
∗, 𝑋1𝑡

∗), (𝑌𝑡
∗, 𝑋2𝑡

∗) and 

(𝑌𝑡
∗, 𝑋3𝑡

∗), presented significant “peaks”. The “peaks” 

and form of the crosscorrelation functions of the pairs 

mentioned, produced the next transfer function models:   

Transfer function between 𝑌𝑡 and 𝑋1𝑡: 

(1 + 0.36𝐵12)(1 + 0.65𝐵)(1 − 𝐵12)(1 − 𝐵)𝑌
𝑡

=
0.37

(1 + 0.76)
𝑋1𝑡 − 1.46𝐼𝑡 + 𝑎𝑡 

                            𝜎𝑎𝑡

2 = 0.076                    (4) 

Transfer function between 𝑌𝑡 and 𝑋2𝑡: 

(1 + 0.35𝐵12)(1 + 0.68𝐵)(1 − 𝐵12)(1 − 𝐵)𝑌
𝑡

= 0.82𝑋2𝑡−3−1.46𝐼𝑡𝑎𝑡 

                            𝜎𝑎𝑡

2 = 0.076                    (5) 

Transfer function between 𝑌𝑡 and 𝑋3𝑡: 

(1 + 0.36𝐵12)(1 + 0.68𝐵)(1 − 𝐵12)(1 − 𝐵)𝑌𝑡

= 0.13𝑋3𝑡−3− 0.112𝑋3𝑡−5

− 1.28𝐼𝑡 + 𝑎𝑡 

                            𝜎𝑎𝑡

2 = 0.076                    (6) 

Models 4, 5, and 6 required the inclusion of an 

intervention variable, it, to account for an anomalous 

event in December 1996. This variable was defined as: 

𝐼𝑡= 1 if 𝑡 = December 1996 and 𝐼𝑡= 0 otherwise. The 

December 1996 event had a one-time negative impact 

and it could be caused by a weaker La Niña during 

October and November of 1996, before a major El 

Niño which ocurred from 1996-1997 [8]. 

Presence of the intervention variable 𝐼𝑡 produce a 

simmetrycal distribution of the residuals. 
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Interpretation of model (4): In this model,  0.37/

(1 + 0.76𝐵)  represents the dynamic relationship 

between global temperature (𝑋1𝑡) and sea level (𝑌𝑡). 

The numerator indicates contemporary increase in sea 

level of 0.37 cm for an increase in 1C in global 

temperature, while the denominator represents the rate 

of decrease of global temperature effect on sea level. 

The steady state gain was 0.21 (0.21 = 0.37/(1 +

0.76), it indicates that, in the long run, a 1-unit increase 

in global temperature will result in a 0.21 cm increase 

in sea level. 

Interpretation of Model (5): The 3-month lag 

represent the time it takes for ocean temperature 

changes to affect sea level. The strong relationship 

between ocean temperature and sea level suggests that 

oceanic processes play a significant role in sea level 

variability.  

Interpretation of Model (6): Sea level responds to 

CO2 changes with both positive and negative lagged 

effects. The positive effect (0.13) at 3 months, suggests 

a short-term increase in sea level due to CO2. The 

negative effect (-0.112) at 5 months suggests a 

subsequent decrease in sea level. The lagged effects 

may represent the time it takes for CO2 changes to 

affect sea level through thermal expansion, ice melting, 

or ocean circulation changes. 

The opposing effects at different lags suggest 

complex interactions between CO2 and sea level. 

Seasonal components indicated that sea level is 

influenced by climate cycles. Analysis of residuals of 

models: 4, 5 and 6 produce symmetric distributions 

(Fig. 5). Also absence of autocorrelation with the Ljung 

and Box test [13] was not rejected with p-values: 0.642, 

0.642 and 0.59, for global temperatura, ocean 

temperatura and CO2, respectively. 

 
Fig. 5  Residuals of transfer function models. 
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In order to estimate the annual average prediction 

sea level for 2050, model: ARIMA(1,1,0)(1,1,0) [12] 

was applied for the whole data (December 1992 to 

November 2022) (Table 2).  

This model produced an annual average prediction 

for 2050 of 30.57 cm. The IPCC [1] forecasted an 

average of 28 cm. As we can see both forecasts are very 
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Table 2  Parameter estimates of the ARIMA models adjusted to sea level and environmental time series from December 

1992 to November 2022. 

Model Variable AR1 AR2 AR3 MA1 SAR1 𝜎𝑎𝑡

2  

ARIMA(1,1,0)(1,1,0) [12] 𝑌𝑡: Sea level -0.68 - - - -0.35 0.078 

ARIMA(3,1,0) 𝑋1𝑡: Global temperature  -0.41 -0.16 -0.20 
  

0.010 

ARIMA(1,1,0) 𝑋2𝑡: Sea temperature 0.14 - - - - 0.001 

ARIMA(0,1,1)(0,1,1)[12] 𝑋3𝑡: 𝐶𝑂2 - - - -0.79 0.86 0.015 

 

4. Conclusion 

Sea level rise accelerated over time, with durations 

of: 9, 7, 6, 4, and 4 years for the periods: December 

1992-June 2001, July 2001-August 2008, September 

2008-July 2014, August 2014-August 2018 and 

September 2018-November 2022, respectively. The 

corresponding average levels were: 0, 1.40, 3.09, 5.21, 

and 6.85 cm, respectively.   

Three positive growth changes were observed in the 

series’ slope, highlighting an accelerated sea level rise 

from January 2017. The predictive series showed 

positive slopes and correlated positively with sea level 

change. This analysis showed that seal level time 

series tend to react to changes in environmental 

variables within few months. This statement reflects 

the widely accepted scientific consensus on the 

relationship between climate change and sea level rise. 

Transfer function model fitting revealed that for 

every 1°C increase in ocean temperature, sea level 

rises by 0.82 cm. Global temperature has a positive 

impact on sea level with a contemporaneous impact of 

around 0.37 cm which increase at a rate of 76%. Sea 

level responds to CO2 changes with both positive and 

negative lagged effects. The positive effect (0.13) at 3 

months suggests a short-term increase in sea level due 

to CO2. The negative effect (-0.112) at 5 months 

suggests a subsequent decrease in sea level. The 

lagged effects may represent the time it takes for CO2 

changes to affect sea level through thermal expansion, 

ice melting, or ocean circulation changes. The 

opposing effects at different lags suggest complex 

interactions between CO2 and sea level.  

The application of time series methods offers a 

remarkably efficient and accessible approach to 

analyzing climate change indicators, such as sea level 

rise, outperforming more intricate non-linear models 

like physical models. This breakthrough unlocks new 

avenues for predictive analysis and insightful 

decision-making. 
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