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Abstract: In order to analyze lotic water bodies with different temporality of mining abandonment (without mining S0, 5 to 10 years S1, 
30 years S2 and current mining S3), the physicochemical variables of the water and the assembly of periphytic algae were correlated to 
evaluate the impact of the mining disturbance in Jigualito (Choco-Colombia) through the ecological quality index (EQI). One sampling 
point was established upstream and one downstream in each station. It was found that the frequency and abundance of the species is 
conditioned by the physicochemical state of the environment and that the EQI values increased in the sites without mining exploitation 
such as S0 (EQI: 6.9), while the most disturbed point in terms of ecological was located downstream of S2 and S3 (EQI: 5.2), where the 
current mining is located and in intermediate conditions were stations S1, S2 (upstream) and S3 (upstream). The relationships between 
the EQI and physicochemical variables suggest that the ecological quality of the habitat for algae decreases when there is over 
saturation of nutrients and suspended material in the water. The taxa that presented high optimal and low tolerance could be used as 
bioindicators of the environmental gradient in systems disturbed by mining. 
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1. Introduction  

Mining is an activity carried out in many countries, 

including underground, surface extraction, drilling, 

dredging and open-pit mining. The latter obtains 

minerals by means of surface excavations, which 

includes stages such as the removal of vegetation layer, 

contributing considerably to deforestation and the 

increase in the concentration of heavy metals in the 

environment, generating economic, social and 

environmental impacts [1]. Gold mining poses a 

significant risk to public health due to the acute and 

chronic toxicity associated with pollutants such as lead, 

mercury, cadmium, chromium and its derivatives [2]. 
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However, one of the worst consequences of mining 

is related to the impact of ecosystem functions due to 

the fragmentation of habitats, the acidification and 

compaction of the soil, which reduced photosynthesis, 

oxygen production, transfer and cycling of nutrients, 

among others [3]. Latin America is one of the main 

suppliers of mineral resources, the environmental 

impacts do not stop increasing in countries like Chile, 

Argentina, Peru, Brazil and Colombia, which is 

considered an emerging power when it comes to 

mining and oil. In just the last 10 years, authorization to 

develop mineral and oil extraction projects has been 

sought in 40% of Colombian territories [4]. Geology, 

physiographic history, and land use are among the most 

important factors influencing distribution in surface 

waters, especially lotic systems [5, 6] and in 

megadiverse countries such as Colombia, in which 
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there are areas characterized by rain forest tropical, 

biodiversity is related to high water richness, one of 

these areas is located in the Chocó, recognized 

worldwide by the combination of geographical and 

climatic characteristics that generate a high degree of 

endemism [7], hence, the Chocó is registered today as 

one of the places most vulnerable to mining impacts 

developed in this area since the seventeenth century 

[8]. 

Open pit mining is the main form of exploitation of 

precious metals in the Chocó, this activity is developed 

using machinery to remove material from the soil, 

divert river beds and use them as a source of water 

supply and disposal site for the waste, which includes 

large amounts of sediment, chemical pollutants, metals, 

fats and oils [8-13]. 

In Colombia, some authors such as Martínez and 

Donato (2003) [14], Licursi and Gómez (2003) [15], 

Díaz and Rivera (2004) [16], Hernández et al. (2011) 

[17], Zapata and Donato (2005) [18], Ramírez and 

Plata (2008) [19], Rivera and Donato (2008) [20], 

Aguirre et al. (2008) [21] have used biological groups 

to assess the level of affectation and response of water 

ecosystems in the face of anthropogenic disturbances 

and between aquatic biota groups the use of periphytic 

algae in conjunction with the physicochemical 

variables used to understand, among other aspects, the 

state of ecosystem dynamics and the level of 

intervention of a water body [22-26]. 

The periphytic algae have been used in the design 

and application of water quality indexes, which has 

qualitatively and quantitatively allowed to establish 

ranges and ratings on the environmental status of a 

water ecosystem, in this respect some examples in the 

tropics are exposed by Bate et al. (2004) [27], 

Schneider and Lindstrom (2009) [28], Castro (2009) 

[29], Pinilla (2010) [30], Schneider and Lindstrom 

(2011) [31], Carmona et al. (2016) [32], Baylón et al. 

(2018) [33], among others; this type of work combines 

the physical, chemical and biological variables as a tool 

for the analysis of the response of the environment to 

natural conditions or anthropic affectations. Activities 

such as mining disturb sensitive aspects of periphytic 

algae habitat, such as the availability of substrates 

immersed in the stream for colonization, due to the 

removal of natural substrate; or the limitation of light 

due to greater turbidity caused by the resuspension of 

sediments conditions generated due to the mining 

disturbance and its affectation in the soil during the 

removal of the riverbed to take advantage of the gold 

extraction [34-36]. 

One of the tools that can be used to evaluate this type 

of problems through the relationships between 

biological groups and environmental variables is the 

ecological quality index (EQI), which includes a 

numerical system in which the ecological quality is 

determined by an environmental gradient through a 

direct relationship analysis, the determination of 

tolerance ranges and optimal values by taxa based on 

that environmental gradient and quality weights for 

each evaluated station [37]. The EQI is based on the 

proposal of Haase and Nolte (2008) [38] and Chalar et 

al. (2011) [39] and its use provides information for 

management decision making, as well as for the design 

of restoration strategies and bioindication in areas with 

disturbances [17]. This study analyzed the response of 

the periphytic algae compared to the environmental 

gradient in the mining area adjacent to the Jigualito 

River in Condoto-Chocó and aims to establish the 

status of water bodies exposed to different times of 

mining activity, as well as taxa and indicator variables 

or sensitive to the conditions of the area, which could 

offer relevant information in terms of the adequate 

guidelines for monitoring in the area.  

2. Materials and Methods 

2.1 Study Area  

The study area is located in the San Juan Mining 

District, specifically in Jigualito River municipality of 

Condoto (Chocó-Colombia). The area is characterized 

biophysically by representing a tropical rain forest, 

where the rainfall regime is intense with an annual 
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rainfall ranging between 4000 and 10000 mm, average 

temperature is 26°C and relative humidity greater than 

80% [40]. The territory is classified as 

“umbrofila-evergreen forest”, with predominance of 

low altitude and alluvial forest [41]. The climate is 

warm, very humid and rainy. According to Holdrige’s 

classification system (1979) [42], it corresponds to a 

tropical rain forest life zone (bpT). The main economic 

activities are mining, fishing, low-scale agriculture of 

corn, cassava and fruit trees. Four water sources were 

selected that allowed the identification of different 

stations according to the times of exposure to the gold 

mining activity. The first station corresponded to a 

water source without mining intervention (S0), the 

second presented between 5 and 10 years of cessation 

of activity (S1), the third had more than 30 years of 

activity abandonment (S2) and the last one presented 

current reception of mining discharges at the time of 

sampling (S3). 

2.2 Description of Sampling Stations and Sampling 

Points  

At each station, 2 sampling points were established 

located upstream (u) and downstream (d) of the source. 

Four samplings were made during the year 2015 

between the months of May, August and October, the 

designation of these four samplings in the manuscript is 

(t1, t2, t3, and t4). The Table 1 describes the 

characteristics of the sampling stations. 
 

Table 1  Location and characteristics of sampling stations 
and sampling points. 

Station 
(code) 

Location of 
sampling points 
(u: upstream, d: 

downstream) 

Characteristics of the 
stream 

Station 
(S0). Pichirí 

Creek. 
Stream 
without 
mining 

intervention 

(u) 
N 5°1’8’’ 

W 76°41’17’’ 

66 - 89 masl, running and 
clean waters. Area of 

111.95 Ha (5.01 Km2), 
length of 1.97 Km, 

average width of 0.057 
km and is located. 

Riparian vegetation 
dominated by .Inga sp, 

Miconia sp, Dialyanthera 
sp, Socratea exorrhiza, 
Gusmania sp, Matisia 

(d) 
N 5°1’7,1’’ 

W 76°41’16,8’’ 

Castano. 

Station 
(S1). 

Sabaleta 
Creek. 
Stream 

with mining 
suspension 
between 5 

and 10 
years 

(u) 
N 5°1’50,2’’ 

W 76°41’20,5’’ 

48-63 masl, channel 
diverted and interrupted, 
lagoons connected or 
disconnected from the 
main channel. Area of 
457.11 Ha (10.48 km2), 
length of 2.73 km, 
average width of 1.26 km, 
vegetation interrupted in 
banks with predominance 
Gramineas and 
Ciperaceae 

(d) 
N 5°1’49.6’’ 

W 76°41’14.7’’ 

Station 
(S2). 

Marcos 
Díaz Creek. 

Stream 
with mining 
suspension 
for 30 years 

(u) 
N 5°2’32.1’’ 

W 76°41’33.6’’ 

56-59 masl, channel 
modified and integrated 
by natural sectors 
connected with an 
artificial channel. The 
natural sectors have lotic 
characteristics and the 
channel constitutes a 
stretch with slow and 
flooded flows. area of 
52.04 Ha (3.15 Km2), 
length of 1.24km, average 
width of 0.42km. Riparian 
vegetation interrupted 
with predominance of 
Spathiphyllum 
friedrichsthalii, 
Gleichenia bifida, 
Gramineas and 
Ciperaceae. 

(d) 
N 5°2’35.3’’ 

W 76°41’30.9’’. 

Station 
(S3). 

Jorobibó 
Creek. 
Stream 

with mining 
activity 

during the 
study 

(u) 
N 5°22’56.7’’ 

W 76°36’51.3’’ 

90-99 masl, deviation of 
the channel. Area of 
246.27 Ha (2.46 Km2), 
length of 2.58 Km, an 
average width of 0.95 
Km. Vegetation in 
interrupted banks, 
predominance of 
Gleichenia bifid, algunas 
Gramíneas (Axonopus sp), 
Ciperaceas and Aráceas. 

(d)  
N 5°22’51.8’’ 

W 76°36’53.8’’ 

 

2.3 Sample Taking and Analysis  

The variables that were measured in situ were flow 

rate, velocity (m/s), temperature (°C), pH (pH units), 

dissolved oxygen (mg/L), conductivity (μS/cm) and 

dissolved solids (TDS) (mg/L), by using a YSI 

Professional Plus Quick 1700/1725 Multiparameter. 

Likewise, the nutrient concentrations of nitrates, 

nitrites and phosphates (mg/L) and suspended solids 

(SS) (mg/L) were determined using a HACH DR 900 

Portable Colorimeter. To remove the phytoperiphitic 
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samples, it was removed from the adhered material. to 

substrates immersed in the stream bed obtaining a total 

area of 240 cm2 of scraping per station, the collected 

sample was fixed with a solution of lugol at 10% and 

transported to the laboratory in opaque plastic 

containers duly labeled. An inverted microscope was 

used to observe the algae samples, and the 

Sedgwick-Rafter counting chamber with a capacity of 

1ml was used to mount the sample [43]. To carry out 

the counting of periphytic algae in the chamber, 30 

observation fields were selected following a random 

sampling system [44]. The count was performed with a 

total magnification of 400X and the taxonomic 

determination of the periphytic algae was carried out at 

least up to the taxonomic gender category with the 

advice of a specialist. 

2.4 Data Analysis  

To establish the response of assemblage of 

periphytic algae to the changes in the physicochemical 

variables of the water, the ecological quality index 

(EQI), established by Haase and Nolte (2008) [38] and 

Chalar et al. (2011) [39]. This index is based on the 

application of a series of multivariate statistical 

analyzes, which included the determination of the 

environmental gradient through a Detrended 

Correspondence Analysis (DCA) [45], followed by a 

canonical correlation analysis (CCA) and the 

determination of the optimal and tolerance values for 

each of the taxa incorporated in the model. The 

calculation of the EQI was determined in accordance 

with equation (1) proposed by Haase and Nolte (2008) 

[38]. 

EQI = (ΣOpi*Toli*Abi)/(ΣOpi*Toli*Abi)     (1) 

where (Opi) is the optimal value, (Toli) the tolerance 

value and (Abi) the abundance. 

The analyzed data correspond to the abundances of 

the periphytic algae and the records of the 

physicochemical variables. All data were standardized 

according to Guisande-González et al. (2006) [46]. A 

rescheduling of station scores was performed, 

according to the CCA model. In the C2 program (free 

software) the optimal and tolerance values for each 

organism were obtained from a weighted averaging 

analysis (WA) using the abundances of the algae and 

the data obtained in the rescaling of the scores of the 

CCA mode. 

Finally, a cluster was carried out between the 

sampling sites, using the Ward method and the 

Euclidean distance. All the multivariate analyzes were 

carried out in the statistical software R. 

3. Results  

Composition and structure of the periphytic algae. 

52 morphotypes of periphytic algae were recorded, 

these belong to cyanobacteria, chlorophytes and the 

division with the largest number of representatives 

corresponds to the division Bacillariophyta or diatoms. 

The distribution of density and number of taxa in the 

stations and sampling showed trends to higher values in 

both parameters (410 Org/cm2 and 13 taxa) in stations 

S0 and S1 (Without mining and without mining activity 

between 5-10 years respectively), in contrast, stations 

without activity for more than 30 years (S2) and 

especially with recent activity (S3) recorded the lowest 

densities and richness of organisms (303 Org/cm2 and 8 

taxa) (Fig. 1). The morphotypes with greater 

representation or adaptation between the seasons 

indifferent to the scenario (except for the station with 

downstream mining (S3d)) correspond to the diatom 

Frustulia rhomboides and the chlorophyte Ulothrix sp., 

In contrast, other taxa that only tend to be registered in 

the station without mining (S0) were Actinella sp., 

Eunotia serra., Stigonema sp., and Surirella sp. 

3.1 Environmental Gradient  

The length of the environmental gradient in the first 

axis registered a value of 3.87 SD, indicating that the 

response of the assembly of periphytic algae with 

respect to the physicochemical variables presented the 

unimodal behavior, for which the CCA model was 

statistically significant (p-value = 0.016). The variables 
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Table 2  Spearman relationship coefficients between the ecological quality index and the environmental variables included 
in the canonical correspondence analysis model. 

Enviromental 
Variable 

Flow Conductivity NO2- NO3- 
Disolved 
Oxygen 

pH PO4-3 
Suspended 

solids 
Temperature Velocity 

Correlation 
(r) 

0.34 -0.23 -0.41 -0.48 0.11 0.25 0.05 -0.5 -0.58 -0.32 

p value 0.06 0.201 0.025 0.058 0.559 0.16 0.807 0.014 0.001 0.071 
 

they adapted to scenarios exposed to different levels of 

temporary exposure to mining, such cooperation was 

demonstrated by Frustulia rhomboides and the 

chlorophyll Ulothrix, however, when the mining 

intervention was active, the density and richness of 

periphytic algae decreased drastically, evidence of the 

abrasive effects that the activity has on the aquatic 

biota and consequently of the ecosystemic functions in 

the hydric system. In this respect, the loss of aquatic 

biodiversity is one of the greatest problems currently 

caused by human activity, however, the consequences 

of this process for the functioning of freshwater 

ecosystems are still unknown. In this context, 

knowledge of biodiversity is of extreme importance, 

considering that several organisms can be used as 

bioindicators of water quality, such as fish, benthic 

macroinvertebrates and periphyton [47-49]. 

As in other studies [50-52], the structure of the 

periphytic algae of the water sources studied in the 

Jigualito del Chocó Colombian River evidenced the 

impact of human activities. In context to its potential as 

a bioindicator, the aim of this study was to determine 

the effect that environmental variables, as well as 

physical and chemical variables of the water, have on 

the taxonomic composition and abundance of 

periphytic algae adhered to natural substrates. This is 

how the relationships between the variables and the 

organisms generated, through the use of the ecological 

quality index, an environmental gradient that allowed 

the identification and categorization of the response of 

the periphytic algae in each season with different 

exposure time to mining. 

Among the fundamental variables that defined the 

environmental gradient of the section studied were 

velocity, dissolved solids, conductivity, flow, nitrites, 

nitrates, orthophosphates, temperature, dissolved 

oxygen and pH, for which the most important chemical 

components that influence this system are they are 

associated with the amount of ions in the water, the 

hydrology and the concentration of nutrients. Most of 

these variables are influenced by the concentration of 

total suspended solids and the flow, which represents 

the dynamics of the natural sources and the anthropic 

activity that takes place in the area. This gradient of 

environmental variation obtained from the CCA 

expresses delineations in the water quality that 

significantly influenced the distribution of the 

periphytic algae. It can be established that the activities 

that condition this behavior are mainly due to the 

progressive fragmentation and the dynamics of the 

areas, due to the changes that have occurred in the 

development of mining activities in the zones, which 

determines a loss in connectivity which is evident in 

the differences that they presented in the sampling 

stations. 

The correlation between the physicochemical 

variables and the periphytic algae, through the 

ecological quality index, showed that the most 

ecologically disturbed season corresponds to the areas 

with current mining operation, however this is 

conditioned to the sampling period, so stations where 

there was development of mining activities may show 

low ecological quality index. This result may be related 

to the changes that this activity causes in the aquatic 

ecosystems and associated vegetation, since the 

process developed for the extraction of metals includes 

the deforestation of banks and the surrounding forest 

matrix, which consequently displays other effects such 

as the contribution of high concentrations of solids, the 

modification of the substrates and the deviation of the 
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channel, generating the degradation of the 

environmental conditions of the bodies of lotic water. 

According to Hauer and Lamberti (1996) [53] the 

fluvial processes are governed mainly by the current 

flow, the morphology, the energy transfer rates, the 

cycles of matter and nutrients and the disturbance 

regimes, which are determining in the distribution of 

organisms in space and time [54]. 

Martínez and Donato (2003) [14] have indicated that 

hydrological, physical and chemical characteristics, as 

well as disturbances, spatial and temporal 

heterogeneity in rivers, define distribution, dispersion, 

colonization, the response of organisms to the 

environment and their ecological status. This explains 

the difference of the EQI between the stations, for the 

case of those sampling sites with temporalities of 

mining cessation between 5 to 10 years and 30 years 

(S1 and S2) intermediate values were presented, 

evidencing that they are still in the process of recovery, 

where the restoration of the disturbance is complex, 

given the break in the stability of physical, chemical 

and biological processes. 

The highest values of the ecological quality index 

coincided with the season without mining, showing 

that bodies of water without this disturbance have a 

high numerical range in the quality status as habitat for 

the biological study group, which is why they 

constitute areas of priority attention for conservation 

within the basin and that can also serve as comparative 

control stations when projecting induced restoration 

activities. In an intermediate group were the sites with 

cessation of mining activity and the upstream site 

where mining activities are currently taking place, this 

could indicate that the areas upstream of the mining 

discharges retain environmental characteristics and 

ecological conditions similar to the natural ecosystems 

in process of recovery. 

The results of the index and its relation with 

environmental variables indicated that the ecological 

quality of the stations is directly influenced by specific 

physicochemical variables such as the concentration of 

inorganic forms of nitrogen, suspended solids and 

temperature, that is, these variables account for the 

status or the ecological quality of the habitat for the 

periphytic algae, showed in an increase in nutrients and 

suspended material in the water, such as occurs during 

the mining disturbance, decreases the ecological 

quality according to the index. The above, together 

with the statistical significance of an inversely 

proportional relationship on the part of the temperature, 

makes it possible to infer from the results of the index, 

that the degradation of the habitat due to deforestation, 

erosion and the consequent increase in the temperature 

in the water caused by the mining, could generate 

greater stress for the development of the periphytic 

algae community, which coincides with what was 

expressed by Allan (1995) [55], Hynes (1970) [56] and 

Roldán and Ramírez (2008) [57], who affirm that the 

main factors that control the dynamics of the periphytic 

algae and limit their production are light, nutrients, 

temperature, velocity of current and substrate, the first 

three being the main factors. 

They determined the optimal ranges and tolerance 

for taxa, allowed to identify the ranges in which 

organisms respond to the environmental gradient. The 

optimal value corresponds to the score of each taxon in 

the gradient of environmental variation, in other words, 

it is the expression of the coupling of abundance to 

environmental conditions; however, the optimum value 

must be analyzed in conjunction with the tolerance 

value, which describes the ecological amplitude along 

the environmental gradient [39], that is, the persistence 

of the abundance of the independent taxa of the 

variation of environmental conditions. 

In general, the frequency and abundance of several 

species with optimum levels greater than 6 suggests 

adaptation to the environmental conditions of the 

studied stations [17]. Additionally, it is proposed that 

the periphytic algae that presented high optimal values 

and in turn medium to low tolerance levels, indicate 

sensitivity to the amplitude of the environmental range 

and for this reason could be used as bioindicators for 
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the evaluation and monitoring of water ecosystems 

disturbed by mining, not only in the town of Jigualito, 

also in the mining district of the San Juan River, which 

shows the same patterns of mining exploitation in 

Jigualito, water regimes and environmental conditions; 

some of the periphytic algae with these characteristics 

were Achanthes sp., Actinella sp., Encyonema sp., 

Eunotia brasiliensis, Eunotia cf. minor, Fragilaria sp., 

Oedoclonium cf., Oscillatoria sp., Phormidium sp., 

Stigonema sp. and Surirella sp. To confirm the use of 

these organisms as bioindicators, it is recommended to 

gather results from alternative systems and to define 

comparisons between average values of tolerance, so 

that the response to environmental variability can be 

corroborated. These morphotypes will be of 

considerable attention in terms of their degree of 

occurrence and abundance in future samplings, since 

they will allow to identify changes in the 

physicochemical quality. 

The results of the optimal values and tolerance can 

also help to identify the taxa adapted to the mining 

disturbance in the Jigualito area, such as 

Fragillariforma sp., Pinnularia cf. viridis, Eunotia cf. 

glacialis, Eunotia elongate, Tribonema sp. and Ulnaria 

sp, indicated adaptation or high level of tolerance to the 

adverse conditions of the periphytic algae growth, that 

is, low availability of light and environmental stress by 

nutrients and solids, these morphotypes correspond to 

elongated unicellular forms with silica exoskeleton and 

filaments, specifically diatoms and chlorophytes with 

conspicuous and projected shapes with an important 

axial linear dimension, these forms indicate adaptation 

to low availability of light as they project their surface 

volume ratio to make their physiology more efficient. 

Specifically, Díaz and Rivera (2004) [16] have 

indicated that Pinnularia cf. viridis is considered a 

facultative heterotrophic diatom, which allows its 

reproduction in extreme ecosystems and with 

morphological variability. Also, authors such as 

Hustedt (1959) [58] and Bourelly (1968) [59] have 

reported for the genus Eunotia sp. its ability to 

withstand slightly acidic waters and intervened 

environments. Reports that coincide with the trends 

obtained in this study. In general, the frequency and 

abundance of several species with high optima 

corroborated that there is adaptation to the conditions 

and environmental stress of the selected stations and in 

the first instance, they are the organisms that can 

provide help in the monitoring of the behavior of the 

basins. 

The open-pit mining activity developed in the town 

of Jigualito-Chocó, degrades the environmental and 

ecological conditions of the water sources exposed to 

the exploitation process, the riparian vegetation and the 

associated forests are deforested to access the soil 

layers that contain the metals, in addition the hydric 

bodies are diverted to capture the water, used in the 

washing of the lithological substrates, which in turn 

increases the discharge of sediments, generating a 

modification in the physicochemical and hydrological 

conditions, affecting the community of parasite algae 

that colonize the substrata immersed in the current, that 

is to say, one of the components of the primary 

productivity of the fluvial ecosystem, since the base in 

the trophic structure is altered, diminishing the supply 

of the environmental services. 

In this study, the water sources disturbed by mining 

registered high concentrations of suspended solids and 

nutrients, authors such as Luttenton and Baisden (2006) 

[60], Cushing and Allan (2001) [61] support the idea 

that in rivers where activities are carried out that 

provide sediments, the amount of solids in suspension 

and the availability of nutrients increases, which 

hinders the penetration of light into the body of water, 

inducing changes in the periphytic community, such as 

the reduction of primary productivity and diversity. 

The results obtained, show that although these 

affectations are reduced with time, their effects are 

persistent in the long term, since when comparing the 

environmental and ecological state of the different 

stations, it was found that during the first 5 to 10 years 

of cessation of mining activity occurs a reduction in the 
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amount of suspended solid material favored by 

sedimentation, but temperatures increase as a result of 

greater exposure to the sun due to the lack of associated 

vegetation and low flow rates. The trend of the 

physicochemical variables, the ecological analyzes of 

the periphytic algal structure and the calculation of the 

ecological quality index, showed that the downstream 

point of the station with current intervention presented 

the lowest values of ecological quality, as well as 

indicated that the seasons of 5 to 10 years and 30 years 

of mining cessation have intermediate conditions, that 

is, in the process of stabilization, finally the 

environments that have not had this type of 

intervention showed the best ecological quality. 

It can be inferred that the mining disturbance has a 

complex process of temporary restoration in the 

affected water ecosystems and that it is not enough to 

stop the activity for 10 or 30 years to return to the initial 

state of a source without intervention. The ecology of 

continuous processes in river ecosystems [62], as a 

spiral of nutrients [63] or as a series of discontinuities 

[64], state that environmental and biological conditions 

they distribute along the channel and their interaction 

determines the operation and in this case, the mining 

modifies them drastically, interrupting the continuity 

of the quality of the habitat, which will generate a long 

process to enable the possibility of restoring the offer 

of environmental services. 

The information obtained was useful to analyze the 

impacts and behavior of the disturbance and showed 

that with the apparent improvement of turbidity in 

stations affected by mining between 10 to 30 years, the 

systems do not present similar conditions to a place 

without intervention. Finally, this work invites us to 

think that the monitoring, monitoring and restoration 

requirements demanded by the areas affected by 

mining vary according to the exposure time, the 

ecological impact generated by the extension of this 

type of extraction in mega-diverse geographic areas 

such as Chocó and other areas of Colombia has not 

been studied and represents an important challenge in 

the adequate approach to the problem and its 

mitigation. 

According to Pineda et al. (2014) [65], Canonical 

Correspondence Analysis (ACC) and weighted 

averages (AW) have been objective and effective 

methods for the development of biological indices that 

assess environmental quality. The estimation of the 

ecological quality index in the Jigualito town combined 

the potential of the direct gradient analysis (ACC) 

together with a weighted average model (WA). In the 

case of Colombia, some publications were found that 

combine both tools to establish optimal and tolerance 

scores with periphytic algae and other bioindicator 

groups [17, 37], on this occasion it is concluded that 

the EQI was a tool that made it possible to 

environmentally diagnose areas with different 

anthropic interventions of a mining nature, by means of 

categories that refer to an ecological state and that were 

constructed from correlations between 

physicochemical variables with the abundance of the 

periphytic algae, a condition that does not meet the 

conventional indexes. The index provided an objective 

and rigorous response to evaluate in numerical form the 

position of each of the sampling stations in a gradient 

associated with the concentration of solids, nutrients 

and temperature, variables that affect the distribution of 

the optimal values and tolerance of the algae periphytic 

to the physicochemical conditions of the zones, which 

suggest deterioration of the stations where some type of 

mining activity has been carried out, and where, in 

addition, the slow recovery of the aquatic ecosystems is 

evidenced despite the cessation of the mining activities. 

In accordance with the elaboration of any aquatic 

ecological index requires the physicochemical data of 

an adequate design in the monitoring network, which 

contemplates the influence of clean waters until 

contaminated; quantify the taxonomic resolution 

quantitatively and determine the abundance of each 

taxon. 
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