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Abstract: Previous studies have shown that beta probability density functions (β-PDFs) are very good fits of the observed relative 
frequency distributions of data from various stations for dimensionless physical quantities such as the clearness index (kt), the diffuse 
fraction (kd ), the relative wind speed (vr) and the relative sunshine duration (sr). In this work, attempts have been made to fit actual 
relative frequency distributions of sunshine duration (S) data with 2-parameter Weibull PDFs, which are otherwise often used to fit 
experimental frequency distributions of wind speed and wind power density data. The monthly and annual observed relative frequency 
distributions (fi,obs) of S data from a 5-years period of records at six Burundian stations have been implemented and their main 
characteristics have been derived. The shape and scale parameters (k and c, respectively) of the theoretical (Weibull) PDFs (fi,th) fitting 
those distributions (fi,obs) have been determined by the means of the graphical method. The validity of the obtained formulations has 
been checked through three complementary statistical tests, namely the mean bias error (MBE), the root mean square error (RMSE) and 
the t-statistics. For any of the 78 S datasets, the MBE and the RMSE have been found very low as expected, since they lie in the ranges 
[-0.01;+0.009] and [0.040;0.052], respectively. Moreover, the values of t were lower than their critical counterparts (tc). Those results 
show that the 2-parameter Weibull PDFs obtained so far are not statistically different from the related observed relative frequency 
distributions of S data. They should be therefore used as input data when planning solar energy systems for the stations of this study. 
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1. Introduction 

The sunshine duration (S) is one of the physical 

quantities used to describe the climatic behaviour of a 

given geographical area and then to manage social and 

economic activities at that area, e.g., in tourism, 

transport, energy, agriculture, architecture and health. 

When designing solar energy conversion systems for 

example, S data can be used solely or together with 

data of other climatologically quantities to estimate the 

hourly, monthly or annual average of the beam (I), 

diffuse (D) and global (G) solar radiation components. 

This is achieved through statistically based 

formulations, e.g., Ångström-type simple linear 

relationships [1, 2] and linear regressions [3-5]. 
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Furthermore, the statistical properties of I, D, G (and 

thus S) data are required when predicting the storage 

capacity, the long-term mean performance and the 

utilization of solar energy systems. The monthly and 

annual frequency distributions of actual I, D, G and S 

data are needed for that purpose. Nevertheless, most of 

the time, one rather prefers to use appropriate 

analytical expressions playing the role of probability 

density functions (PDFs) and representing the 

empirical frequency distributions of those data. Beta 

PDFs are one kind of such expressions which have 

been demonstrated to fit successfully actual frequency 

distributions of dimensionless physical quantities 

which range randomly from 0 to 1, e.g., the clearness 

index (kt) and the diffuse fraction (kd) [6, 7], the 

relative wind speed (vr ) [8], together with the relative 

sunshine duration (sr) [9, 10]. 
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The sunshine duration S is not a dimensionless 

quantity. Its daily values (in hours) have been recorded 

continuously for a long period at many stations in 

Burundi. The wind speed (v) is another non 

dimensionless quantity for which long-term 

measurements (in m/s) have been performed on a 

1-hour or a 3-hours period basis at different stations in 

Burundi. Data of those (and many other) 

climatologically quantities have been collected and 

kept by the Geographical Institute of Burundi (IGEBU). 

Any of the two quantities (S and v) ranges randomly 

between two boundary values: zero and the day length 

(So) for S, zero and the infinity for v (in theory). In 

practice, the working wind speeds for any wind 

machine range from a starting value and a cut-off one. 

Since 2-parameter Weibull PDFs are commonly used 

to fit frequency distributions of observed wind speed 

(and wind power density) data at various locations 

[11-15], attempts will be made in this work to fit the 

observed relative frequency distributions of S data 

from different Burundian stations, with such kinds of 

PDFs. The main characteristics of those distributions 

will be presented, together with the related fits and their 

statistical tests. 

2. Basic Data and Selected Stations  

The sunshine duration (S) data used in this study 

refer to a 5-years period of records (1990-1994) at the 

following six Burundian stations: Cankuzo (L= 

30.38°E; Ф= 3.28°S’; z=1652 m); Gisozi (L= 29.68°E; 

Ф=3.57° S'; z=2097 m); Kirundo (L=30.12°E;φ= 2.58° 

S'; z=1449 m); Gitega-Airport (L=29.92°E; Ф= 

3.42°S’; z= 1449 m); Makamba (L=29.82°E; Ф= 4.13°S’; 

z=1450 m) and Mparambo (L= 29.82°E; Ф= 2.83°S’; z 

=887m). The quantities L, Ф and z are the station’s 

longitude, latitude and altitude, while E and S' hold for 

east and south, respectively. The previous stations and 

period have been selected for the representation of the 

main Burundian regions and the matching of 

reasonable continuous long-term data records. Owing 

to some record discontinuities, only the following 

numbers of daily S data were available amongst the 

1826 ones expected for each station: Cankuzo (1681); 

Gisozi (1760); Gitega- Airport (1692); Kirundo (1517); 

Makamba (1595); Mparambo (1720).That means a 

total of 9965 data and thus 90.95% of data collecting. 

3. Methodology 

For each station, the S data of the considered period 

have been divided into twelve monthly sets and an 

annual one. That has resulted in 78 datasets for the 

whole database. The relative frequency distribution of 

each dataset has been constructed and its main 

characteristics have been derived. Then, as for fitting 

the relative frequency distribution of observed wind 

speed (v) data by a suitable 2-parameter Weibull PDF 

(which is derived from a Pearson III type distribution), 

a random variable S which is assumed to theoretically 

range from zero to the infinity has been considered. 

That distribution is given by the next expression [11, 

16]: 

F(S) =1-exp൤− ቀௌ௖ቁ௞൨     (1) 

The related PDF has the next form: 

f(S) = 
ௗிௗ௦ = 

௞௖ (	ௌ௖	)௞ିଵ݁݌ݔ ൤− ቀௌ௖ቁ௞൨; k> 0, c> 0   (2) 

where k and c are the Weibull shape and scale 

parameters, respectively. The main techniques used to 

determine empirically those parameters include the 

graphical (or least squares, or linear regression) method 

[16, 17], the maximum likehood method [18, 19], the 

modified maximum likehood method [12, 18], the 

standard deviation method, the moments method, the 

power density method, the equivalent energy method 

and the median rank regression method [11, 13, 20-26]. 

The graphical method has been used in this analysis for 

its simplicity. From Eq. (1), one gets: 

1-F(s) =exp൤− ቀௌ௖ቁ௞൨            (3) 

and thus 	݈݊ሼ−݈݊ሾ1 − ሿሽ(ܵ)ܨ 	= ݇ ln ܵ − ݇ ln ܿ      (4) 

Eq. (4) looks like a straight line equation of the form 
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y = ax +b             (5) 

with 

y =	lnሼ− lnሾ1 −             (6)		ሿሽ(ݏ)ܨ

x =	ln  (7)              ݏ

a = k                        (8) 

b =	−݇ ln ܿ	                (9) 

Therefore, from the observed Si and F(Si) values, 

with F(Si)=∑ ݂൫ ௝ܵ൯௜௝   for each S dataset, a cloud of 

points (xi, yi ) has been constructed. As the Weibull  

(and the exponential and Rayleigh) PDFs do not 

accurately represent the probability of observing zero 

or very low v values [8], [16], Si values equal (or very 

close) to zero were excluded from this analysis. The 

linear regression’s line fitting that cloud has been 

determined by deriving a = k as the slope of that line 

and 	ܾ = −݇	 ln ܿ  as its intercept on the y-axis. The 

correlation coefficient R (between the x and y variables) 

has also been computed. 

The obtained k and c values have been used to plot 

the suitable theoretical (Weibull) PDF (points (Si, fi, th)) 

on the same system of axes as the related  observed 

relative frequency distribution of S data (points (Si, fi, 

obs)). Then the checking of the fitting effectiveness has 

been made through three complementary statistical 

tests, namely the MBE, the RMSE and the t-statistics 

which are defined by the next relationships: 

(i)   MBE =	ଵ௡ ∑ ൫ ௜݂,௢௕௦ − ௜݂,௧௛		൯	௡௜ୀଵ            (10) 

(ii)    RMSE = ቂଵ௡ ∑ 	(௡௜ୀଵ ௜݂,௢௕௦ − ௜݂,௧௛)ଶቃభమ	      (11) 

(iii)          t= ቂ (௡ିଵ)(ெ஻ா)మ(ோெௌா)మି(ெ஻ா)మቃଵ/ଶ	         (12) 

In Eqs. (10) to (12), n is the total number of ranges of 

1.0 hour width each, into which any S dataset has been 

divided in order to construct its frequency distribution. 

The quantities fi,obs and fi,th are the experimental relative 

frequency distribution of that S dataset and the related 

theoretical counterpart (Weibull PDF), respectively. 

An extended discussion on those statistical tests can be 

found in some of the previous references, e.g., in Refs. 

[3, 5, 6, 10, 27, 28]. 

4. Results and Discussion 

4.1 On the Observed Relative Frequency Distributions 

Table 1 indicates for any of the 78 observed relative 

frequency distributions of S datasets, the values of the 

following quantities: mean (ܵ̅), standard deviation (σ), 

variation coefficient (cv) and mode. 
The curves of the relative frequency distributions of 

some S datasets of this analysis are shown in red lines 

on the Figures 1.a to 1.f. Those distributions exhibit the 

following mean features. They are generally spread as 

indicated by the high values of cv in table 1.They are 

also wavering, with one mode in general or two modes 

in particular. They present in general a high negative 

asymmetry (mode > mean). In seasonal trends, the 

highest S means values are noticed in the dry season, 

i.e., from June to September, with the maximum in July. 

At their turn, the lowest S means are observed during 

the rainy season (the remaining period of the year). 

Moreover, owing to the annual average of S from Table 

1, and using ܵ̅o =12.00 h as the mean day length at 

Burundian stations [27], one should term the six 

stations of this analysis as following: Kirundo and 

Makamba are fairly sunny (
௦̅௦బ̅ ∊ [0.48; 0.50]) while 

Cankuzo, Gisozi, Gitega-Airport and Mparambo are 

rightly sunny ( 
௦̅௦బ̅∊ [0.51; 0.60]). 

4.2 On the Fitting Process 

For the whole 78 S datasets, Table 2 exhibits the 

results of the following quantities related to the fitting 

process: the regression coefficients (a and b) and the 

correlation coefficient (R) (between the x and y 

variables), the Weibull shape and scale parameters (k 

and c, respectively), the 3 statistical tests (MBE, RMSE, 

and t). The critical values of t (tc) at different numbers 

of degrees of freedom (n-1) and confidence levels can 

be found in standard tables [29]. In this work, tc = 3.055 

at n = 13 and 99.5% of confidence level. 
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Table 1  Values of the means, standard deviations, variation coefficients and modes of the 78 observed relative frequency 
distributions of S datasets, period 1990-1994. 

(i) Cankuzo 

Month → 
Quantity↓ 

J F M A M J J A S O N D Year ܵ̅(h) 6.17 5.39 6.30 6.85 8.17 9.01 9.53 8.86 8.17 6.60 5.88 4.93 7.21 

σ(h) 3.26 3.00 3.29 3.14 3.03 2.54 1.94 2.34 2.68 3.19 3.10 2.78 3.22 

cv 0.53 0.56 0.52 0.46 0.37 0.28 0.20 0.26 0.33 0.48 0.53 0.57 0.45 

Modes (h) 4.5 5.5;6.5 4.5;5.5 8.5 10.5 10.5 10.5 10.5 10.5 9.5 7.5 4.5 10.5 

(ii) Gisozi 

Month → 
Quantity↓ 

J F M A M J J A S O N D Year ܵ̅(h) 5.51 4.85 5.64 5.71 6.23 7.42 8.68 7.91 7.37 6.02 4.98 5.02 6.31 

σ(h) 3.13 2.89 3.04 2.47 3.12 3.03 2.60 2.67 2.95 2.93 2.63 2.78 3.12 

cv 0.57 0.60 0.54 0.43 0.50 0.41 0.30 0.34 0.40 0.49 0.53 0.55 0.49 

Modes(h) 4.5 0.5 6.5 3.5 7.5 9.5 10.5 11.5 9.5 9.5 4.5 3.5 8.5 

(iii) Gitega-Airport 

Month → 
Quantity↓ 

J F M A M J J A S O N D Year ܵ̅(h) 5.94 5.20 6.00 6.20 6.51 8.07 9.47 8.65 7.65 5.99 5.26 5.28 6.63 

σ(h) 3.17 2.86 3.12 2.81 3.09 2.80 2.42 2.56 2.89 3.04 2.85 2.67 3.11 

cv 0.53 0.55 0.52 0.45 048 0.35 0.26 0.30 0.38 0.51 0.54 0.51 047 

Modes(h) 9.5 6.5 10.5 5.5;7.5 7.5 10.5 11.5 10.5 10.5 5.5 3.5 4.5 10.5 

(iv)Kirundo 

Month → 
Quantity↓ 

J F M A M J J A S O N D Year ܵ̅(h) 5.43 5.20 5.07 5.43 5.31 6.47 7.42 7.23 6.17 5.19 5.45 4.62 5.78 

σ(h) 2.53 2.61 2.59 2.50 2.55 2.56 2.26 2.22 2.40 2.30 2.43 2.39 2.58 

cv 0.47 0.50 0.51 0.46 0.48 0.40 0.30 0.31 0.39 0.44 0.45 0.52 0.45 

Modes(h) 3.5 7.5 5.5 5.5 5.5 8.5 8.5 9.5 7.5;8.5 6.5 4.5;5.5 4.5;6.5 8.5 

(v)Makamba 

Month → 
Quantity↓  

J F M A M J J A S O N D Year ܵ̅(h) 5.01 4.97 5.25 5.13 5.85 7.10 8.91 8.27 7.34 6.06 4.98 4.25 6.04 

σ(h) 3.12 2.60 3.00 2.63 2.75 2.76 1.99 2.29 2.77 2.87 2.84 2.72 3.06 

cv 0.62 0.52 0.57 0.51 0.47 0.39 0.22 0.28 0.38 0.47 0.57 0.64 0.51 

Modes(h) 1.5;5.5 7.5 3.5 4.5 6.5 8.5 10.5 10.5 8.5;10.5 7.5 2.5;5.5 3.5 9.5 

(vi) Mparambo 

Month → 
Quantity↓ 

J F M A M J J A S O N D Year ܵ̅(h) 5.55 5.53 5.51 5.82 6.03 7.05 7.50 7.05 6.21 5.95 5.37 4.92 6.08 

σ(h) 2.85 2.60 2.86 2.33 2.80 2.72 2.42 2.50 2.62 2.64 2.29 2.55 2.72 

cv 0.51 0.47 0.52 0.40 0.46 0.39 0.32 0.33 0.42 0.44 0.43 0.52 0.45 

Modes(h) 6.5 5.5 4.5;7.5 5.5 6.5 9.5 8.5 9.5 7.5 6.5 5.5 3.5;4.5 8.5 
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Table 2 Results of the various quantities related to the fitting process for all the 78 S datasets, period 1990-1994 

(i)Cankuzo  

Months→ 
Quantities↓ 

J 
 

F 
 

M 
 

A 
 

M 
 

J 
 

J 
 

A 
 

S 
 

O 
 

N 
 

D 
 

year 
 

a = k 1.289 1.241 1.520 1.495 1.401 1.673 3.382 1.395 1.781 1.372 1.361 1.279 1.412 
b -2.467 -2.090 -2.638 -3.058 -3.431 -3.936 -8.156 3.883 -4.168 -2.745 -2.382 -2.0251 -2.879 
c 6.779 5.388 5.672 7.733 11.576 10.513 11.152 16.176 10.384 7.394 5.756 4.871 7.682 
R 0.980 0.970 0.928 0.972 0.965 0.781 0.967 0.839 0.973 0.981 0.965 0.939 0.927 
MBE 0.0100 0.0051 0.0018 0.0118 0.0289 0.0184 0.0278 0.0457 0.0376 0.0117 -0.0288 0.0085 0.0089 
RMSE 0.0409 0.0351 0.0427 0.0416 0.0696 0.0905 0.0934 0.1239 0.0733 0.0389 0.1310 0.0386 0.0505 
t 0.8363 0.4871 0.1461 0.9600 1.5140 0.7193 0.9353 1.3161 1.9819 1.0460 0.7807 0.7487 0.6202 

(ii) Gisozi 

Months→ 
Quantities↓ 

J 
 

F 
 

M 
 

A 
 

M 
 

J 
 

J 
 

A 
 

S 
 

O 
 

N 
 

D 
 

year 
 

a = k 1.186 1.167 1.251 1.753 1.321 1.465 1.592 1.823 1.651 1.417 1.467 1.547 1.395 

b -2.032 -1.747 -2.189 -3.153 -2.280 -3.241 -4.072 -4.123 -3.225 -2.593 -2.364 -2.299 -2.595 

c 5.547 4.468 9.520 6.041 5.618 9.136 12.907 9.599 7.052 6.233 5.010 4.420 6.425 

R 0.960 0.950 0.956 0.933 0.950 0.973 0.932 0.975 0.890 0.969 0.992 0.963 0.943 

MBE 0.0245 0.0009 0.0222 0.0027 0.0032 0.0186 0.0347 0.0193 0.0047 0.0064 0.0030 -0.0004 0.0072 

RMSE 0.0389 0.0446 0.0327 0.0283 0.0495 0.0481 0.0667 0.0546 0.0568 0.0376 0.0377 0.0363 0.0418 

t 2.6893 0.0669 3.0667 0.3179 0.2244 1.3910 2.0203 1.2533 1.651 1.417 1.467 1.547 1.395 

(iii) Gitega-Airport 

Months→ 
Quantities↓ 

J 
 

F 
 

M 
 

A 
 

M 
 

J 
 

J 
 

A 
 

S 
 

O 
 

N 
 

D 
 

year 
 

a = k 1.319 1.444 1.339 1.845 1.668 2.143 1.508 1.866 1.688 1.289 1.550 1.512 1.507 

b -2.306 -2.186 -2.483 -3.237 -2.960 -4.762 -4.413 -4.639 -3.733 -2.370 -2.332 -2.542 62.847 

c 5.745 4.563 6.388 5.780 5.898 9.227 18.660 12.014 9.129 6.288 4.502 5.372 6.614 

R 0.944 0.936 0.974 0.968 0.939 0.983 0.934 0.963 0.943 0.961 0.898 0.7000 0.948 

MBE -0.0152 0.0007 0.0075 0.0164 0.0014 0.0162 0.0557 0.0344 0.0168 0.0098 0.0002 0.0042 0.0025 

RMSE 0.0500 0.0416 0.0398 0.0649 0.0473 0.0579 0.1110 0.0715 0.573 0.0416 0.0388 0.0375 0.0381 

t 1.1054 0.0558 0.6364 0.9047 0.1026 0.9216 0.9241 1.7355 1.0623 0.8040 0.0179 0.3562 0.2278 

(iv) Kirundo 

Months→ 
Quantities↓ 

J 
 

F 
 

M 
 

A 
 

M 
 

J 
 

J 
 

A 
 

S 
 

O 
 

N 
 

D 
 

year 
 

a = k 1.529 1.653 1.215 1.814 1.292 1.488 1.285 2.506 2.070 1.673 1.599 1.615 1.619 

b -2.607 -2.395 -2.056 -2.858 -2.283 -2.947 -3.391 -5.086 -3.577 -2.739 -2.698 -2.141 -2.737 

c 5.502 4.258 5.431 3.833 5.853 7.246 13.998 7.610 5.629 5.141 5.405 3.765 5.422 

R 0.969 0.936 0.959 0.968 0.962 0.932 0.919 0.957 0.953 0.141 5.405 3.765 5.422 

MBE 0.0415 0.0642 0.0520 0.0427 0.0479 0.0692 0.1090 0.0738 0.0877 0.0494 0.0458 0.0633 0.0500 

RMSE 0.3372 0.02698 0.6803 0.01623 0.8954 0.6435 1.6244 0.3561 0.0877 O.O494 0.0458 0.0633 0.0500 

t 0.3372 0.02698 0.6803 0.1623 0.8954 0.6435 1.6244 0.3561 0.00395 0.1410 0.1668 0.3831 0.0929 

(v)Makamba 

Months→ 
Quantities↓ 

J 
 

F 
 

M 
 

A 
 

M 
 

J 
 

J 
 

A 
 

S 
 

O 
 

N 
 

D 
 

year 
 

a = k 1.178 1.338 1.174 1.501 1.536 1.334 1.892 2.348 1.585 1.372 1.294 1.167 1.266 
b -3.387 -2.108 -2.008 -2.440 -2.716 -3.031 -4.908 -5.475 -3.387 -2.529 -2.029 -1.584 -2.348 
c 4.933 4.833 5.531 5.081 5.860 9.700 13.384 10.296 8.473 6.317 4.797 3.886 6.389 
R 0.99. 0.959 0.985 0.984 0.967 0.947 0.876 0.982 0..935 0.951 0.978 0.978 0.944 
MBE 0.0047 0.0032 0.0092 0.0031 0.0037 0.0278 0.0372 0.0314 0.0144 0.0070 0.0025 0.0015 0.0086 
RMSE 0.0329 0.0517 0.0369 0.0353 0.0382 0.0620 0.1120 0.0801 0.0617 0.0429 0.0380 0.0469 0.0405 
t 0.4787 0.1961 0.8141 0.2788 0.3228 1.5863 1.1679 1.2783 0.7960 0.5477 0.2187 0.10613 0.7211 
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(vi) Mparambo

Months→ 
Quantities
↓ 

a = k 1

b -2

c 5

R 0

MBE 0.

RMSE 0.

t 0.
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N 
 

25 1.760 1

00 -2.975 -2

98 5.421 4

24 0.973 0

21 0.0023 0

37 0.0412 0

437 0.1785 0

D 
 

year 
 

1.336 1.486 

2.100 -2.676 

4.816 6.054 

0.964 0.936 

0.0039 0.0048 

0.0461 0.0491 

0.2685 0.3258 
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(vi) Mparambo
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was lower than its critical value (tc) for any of those S 

datasets. Therefore, all the Weibull PDFs obtained in 

this analysis are very good fits of the related observed 

relative frequency distributions of S datasets. They 

should constitute useful input data in any project of 

solar energy conversion systems at the considered 

stations. 
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