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Abstract: In this article, effect of thermal radiation and chemical reaction on heat and mass transfer flow over a moving porous sheet 
with suction and blowing has been investigated. Thermal radiation and chemical reaction effects are considered. By using appropriate 
transformations, the governing nonlinear partial equations are transformed into coupled nonlinear ordinary differential equations. 
Graphs are decorated to explore the influence of physical parameters on the non-dimensional velocity, temperature and concentration 
distributions. The skin friction, the local Nusselt number and the local Sherwood number are computed and analyzed numerically. 
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1. Introduction  

Flow of an incompressible viscous fluid and heat 

transfer phenomena over a stretching sheet have 

received great attention during the past decades owing 

to the abundance of practical applications in chemical 

and manufacturing process, such as polymer extrusion, 

drawing of copper wires, and continuous casting of 

metals, wire drawing and glass blowing. The prime aim 

in almost every extrusion is to maintain the surface 

quality of the extrudate. The problem of extrusion of 

thin surface layers needs special attention to gain some 

knowledge for controlling the coating efficiently. 

Crane [1] was studied the pioneering work of the flow 

of Newtonian fluid over a linearly stretching surface. 

Many researchers [2-8] are extended the pioneering 

works of Crane [1] to explore various aspects of the 

flow and heat transfer occurring in an infinite domain 
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of the fluid surrounding the stretching sheet. After all, 
these studies treated with a steady flow only. In some 

cases, the flow field and heat transfer can be unsteady 

due to a sudden stretching of the flat sheet or by a steep 

change of the temperature of the sheet. 

Hossain et al. [9] explained the effect of radiation on 

natural convection flow of an optically thick viscous 

incompressible flow past a heated vertical porous plate 

with a uniform surface temperature and a uniform rate 

of suction where radiation is included by assuming the 

Rosseland discussion approximation. A similarity 

transformation the flow of a thin liquid film of a 

power-law fluid by unsteady stretching of a surface 

which is investigated by Andersson et al. [10]. Later, 

Andersson et al. [11] analyzed the momentum and heat 

transfer in a laminar liquid film on a horizontal 

stretching sheet governed by time-dependent boundary 

layer equations. 

Similarity solutions of the boundary layer equations, 

which describe the unsteady flow and heat transfer over 

an unsteady stretching sheet which is presented by 
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ߟ = ߥටܽݕ ,			߰ = ,(ߟሺ݂ݔ	ܽߥ√ ߠ = ܶ − ஶܶ௪ܶ − ஶܶ,		 ߶ = − ିಮೢିಮ		        (8) 

Using the equations (5)-(8), the problems defined in 

equations (1)-(4) are then transformed into the 

following set of ordinary differential equations: ݂ᇱᇱᇱሺߟ) + ݂ሺߟ)݂ᇱᇱሺߟ) − ݂ᇱଶሺߟ) − ଵ ݂ᇱሺߟ) ݎ்ܩ+ (ߟሺߠ	 + (ߟ߶ሺ	ݎܩ	 	= 0    (9) 

 Pr
( ) ( ) ( ) ( ) ( ) ( ) 0

1 x
R

f f
N

             


΄΄ ΄ ΄
(10) ߶ᇱᇱሺߟ) + ܵܿሾ݂ሺߟ)߶ᇱሺߟ) − ሿ(ߟ௫߶ሺݎܭ = 0	    (11) 

with the boundary conditions  ݂ሺ0) = ܴ,			݂ᇱሺ0) = 1, (ሺ0ߠ = 1,			߶ሺ0) = 1   (12) ݂ሺ∞) = (∞ሺߠ			,0 = 0, ߶ሺ∞) = 0	    (13) 
where primes denote differentiation with respect to ߟ , ܴ = ௩ೢ	√ఔ  is the dimensionless suction/ blowing 

velcity, ܽܦ = ఔ  is the Darcy number, ݎ்ܩ ்ߚ݃= ሺ்ೢ ି ∞்)మ௫  is the Grashof number, ݎܩ = ߚ݃ ሺೢି∞)మ௫   is the modified Grashof number, ܲݎ = ఔఈ  is the Prandtl number, ோܰ = ଵఙ∗ ∞்
యଷ∗  is the 

thermal radiation parameter, ∆= ொబఘು  and ߜ௫ = ఉ∗௫ఘ 

are heat generation/absorption coefficients, ܵܿ = ఔ is 

the Schmidt number and ݎܭ௫ = ′  is the chemical 

reaction parameter, respectively. 

3. Physical Parameters 

The physical quantities of interest are the skin 

frictionܥ, the local Nusselt number ܰݑ௫ and the local 

Sherwood number ܵℎ௫ which are given by ܥ = ଵଶ ܴ݁௫ି భమ݂ᇱᇱሺ0), ௫ݑܰ = ܴ݁௫భమߠᇱሺ0), ܵℎ௫ = ܴ݁௫భమ߶ᇱሺ0)	 (14) 

4. Finite Difference Method (FDM) 

Our main goal in this article is to apply the finite 

difference method to solve the problems (9)-(11) with 

the boundary conditions (12)-(13). This method has 

been tested for accuracy and efficiency for solving 

different problems [16, 17]. 

By using the transformation ݂ᇱሺߟ) = (ߟሺݖ  to 

convert the system of equations (9)-(11) in the 

following form: ݂ᇱ − ݖ = ᇱᇱݖ (15)                  		0 + ᇱݖ݂ − ଶݖ − ଵ ݖ + ݎ்ܩ ߠ + ߶ݎܩ = 0  (16) 

ᇱᇱߠ + ଵାேೃ ሾ݂ߠᇱ + ߠ∆ − ሿߠݖ௫ߜ = 0   (17) ߶ᇱᇱ + ܵܿሾ݂߶ᇱ − ௫߶ሿݎܭ = 0       (18) 

Subject to the boundary conditions: ݂ሺ0) = ܴ, (ሺ0ݖ = 1, (ሺ0ߠ = 1,߶ሺ0) = 1  (19) ݂ሺ∞) = 0, (∞ሺߠ = 0, ߶ሺ∞) = 0   (20) 

The space of solution’s domain is discretized in 

finite difference methods. By using the following 

notations: ∆ߟ = ℎ > 0	 to be the grid size in 

-direction, ߟ∆ = ଵே , with ߟ = ݅ℎ  for ݅ = 0, 1, 2, ………ܰ . Define ݂ = ݂ሺߟ) , ݖ = (ߟሺݖ ߠ , = (ߟሺߠ , and ߶ = ߶ሺߟ) . Letܨ ,ܼ ߆ ,  and ϕ 
represent the numerical values of ݂, ,ݖ  and ߶ at the ߠ

node ݅௧ node, respectively. Then, we get ݂ᇱ│ ≈ శభିషభଶ , ᇱ│ݖ ≈ ௭శభି௭షభଶ ,  

ᇱ│ߠ	 ≈ ఏశభିఏషభଶ , ߶ᇱ│ ≈ థశభିథషభଶ 	   (21) 

ᇱᇱ│ݖ ≈ ௭శభିଶ௭ା௭షభమ ,  

ᇱᇱ│ߠ		 ≈ ఏశభିଶఏାఏషభమ ,	  

					߶ᇱᇱ│ ≈ థశభିଶథାథషభమ          (22) 

By using the FDM the main step is that the system of 

ordinary differential equations (15)-(18) is discretizes 

in space. Now, using the equations (21)-(22) into the 

equations (15)-(18) and omitting the truncation errors, 

finally we get the system of algebraic equations which 

are given forሺ݅ = 0, 1, 2, ାଵܨ :(ܰ……… − ିଵܨ − 2ℎܼ = 0       (23) 
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ܼାଵ − 2ܼ + ܼିଵ + 0.5ℎሾܼାଵ − ܼିଵሿ +ℎଶ ቂݎ்ܩ ߆ + ϕݎܩ − ܼଶ − ଵ ܼቃ = 0   (24) 

ାଵ߆ − ߆2 + ିଵ߆ + ଵାேೃ 0.5ℎሾܨሺ߆ାଵ − (ିଵ߆ +2ℎ∆	ݔߜ−݅߆	(25)     0=݅߆ܼ݅ ϕାଵ − 2ϕ + ϕିଵ +0.5ℎ	ܵܿሾܨሺϕ୧ାଵ − ϕ୧ିଵ) − 2ℎݎܭ௫ϕ୧ሿ = 0 (26) 

Also, the boundary conditions are: ܨ = ܴ, ܼ = 1, ߆ = 1, ϕ = 1   (27) F = Fିଵ,			Z = Zିଵ,			Θ = Θିଵ,	  

 ϕ = ϕିଵ	       (28) 

The nonlinear system of algebraic equations are the 

system of equations (23)-(26) in the variables ܨ, ܼ, ϕ	and	߆ . In our simulations we used the 

MATLAB package.  

5. Results and Discussion 

By using the similarity solution technique in 

MATLAB, the set of ordinary differential equations 

(9)- (11) with the boundary conditions (12)- (13) are 

solved numerically. Here the velocity, temperature and 

concentration are determined as a function of 

coordinate ߟ. We have adopted a numerical procedure 

based on MATLAB for getting the solution of the 

differential equations (9)-(11) with the boundary 

conditions (12)-(13). The fundamental parameters that 

governed the flow are the Grashof number, Darcy 

number, Prandtl number, thermal radiation parameter, 

heat generation/absorption parameter, Schmidt number 

and chemical reaction parameter. According to study 

their effects, a MATLAB programe is written to 

enumerate and produce the graphs for the velocity, 

temperature and concentration for different values of 

these parameters. Few delegate results are given in Figs. 

2-9.  

Figs. 2(a), (b) and (c) show the effects of the 

buoyancy force (Grashof number ݎ்ܩ ) to the viscous 

forces of a typical velocity, temperature and 

concentration profiles in the boundary layer, 

respectively. From Fig 2(a), it is clear that the 

momentum boundary layer thickness increases with 

increasing values of ݎ்ܩ  enabling more flow. In Fig. 

2(b), this figure represents increasing the value of ݎ்ܩ  

outcomes in thinning of thermal boundary layer 

associated with an increase in the wall temperature 

gradient and hence produces an increase in the heat 

transfer rate. 

 
Fig. 2  (a) Velocity, (b) Temperature and (c) Concentration 

profiles for different values of Grashof number ࢀ࢘ࡳ with 

fixed values ofࢇࡰ = . ૡ, ࡾ = . , ∆= . , ࢘ࡼ = . , ࢉࡿ =. 	ࢊࢇ	࢞࢘ࡷ = . . 
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It is noticed that the concentration boundary 

thickness decreases with an increase in the buoyancy 

force. It is due to fact that an increase in the values of 

the Grashof number has the tendency to increase the 

mass buoyancy effect. This gives rise to an increase in 

the induced flow and there by decrease the 

concentration which is shown in Fig. 2(c). 

The influence of Darcy number on velocity, 

temperature and concentration profiles are shown in 

Fig. 3(a), (b) and (c), respectively. From Fig. 3(a), it is 

observed that the velocity increases with the increase of 

the Darcy parameter along the sheet and the reverse is 

true away from the sheet. The dimensionless 

temperature profiles are displayed in Fig. 3(b). 

The influence of suction/blowing parameter R on 

velocity, temperature and concentration profiles is 

shown in Figs. 4(a), (b) and (c), respectively. From Fig. 

4(a) it is observed that the hydrodynamic boundary 

layer which shows an increase in the fluid velocity 

when the imposition of the wall fluid injection 

increases. However, the exact opposite behavior is 

produced by imposition of wall fluid suction. From Fig. 

4(b), it is observed that with an increase the injection 

parameters the temperature increases, and the 

temperature decreases the suction parameter decreases. 

The same behavior arises for the concentration profiles 

which is shown in Fig. 4(c). 

Figs. 5(a), (b) and (c) represent the effect of heat 

generation ሺ∆	> 0)  or a heat absorption ሺ∆	< 0)  in 

the boundary layer on the velocity, temperature and 

concentration profiles. From Fig. 5(a), it is observed 

that increasing the heat generation the fluid velocity 

increase and for the case of absorption parameter 

increases the velocity decrease. With an increase the 

heat generation the temperature increase. This increase 

in the fluid temperature causes more induced flow 

towards the plate through the thermal buoyancy effect 

which shown in Fig. 5(b). From Fig. 5(c) it is clearly 

observed that increasing the heat generation parameter 

the concentration decreases and for absorption 

increasing there is no changed in concentration profile.  

 
Fig. 3 (a) Velocity, (b) Temperature and (c) Concentration 
profiles for different values of Darcy number Da with fixed 

values of ࢀ࢘ࡳ = . , ࡾ = . , ∆= . , ࢘ࡼ = . , ࢉࡿ =. 	ࢊࢇ	࢞࢘ࡷ = . . 
 

Fig. 6 demonstrates the effect of the Prandtl 

number	ܲݎ on the temperature profile. It is observed 

that with the increase of Prandtl number the 

temperature decrease. This because a fluid with large 

Prandtl number possesses large heat capacity, and 

hence augments the heat transfer.  
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Fig. 4 (a) Velocity, (b) Temperature and (c) Concentration 

profiles for different values of sanction/blowing parameter 

R with fixed values ofࢇࡰ = . ૡ, ࢀ࢘ࡳ = . , ∆	= . , ࢘ࡼ =. , ࢉࡿ = . 	ࢊࢇ	࢞࢘ࡷ = . . 
 

Fig. 7 represents the effect of the radiation parameter ோܰ on the dimensionless temperatureߠሺߟ). It is clearly 

noticed that the increase of the radiation parameter ோܰ 

leads an increase in the temperature at any point. This 

is due to fact that higher surface heat flux and thereby 

increasing the temperature of the fluid when the 

thermal radiation parameter increases. The variation of 

the dimensionless concentration against η for different 

values of the Schmidt number Sc are displayed in Fig. 8. 

It is clearly observed that with an increase the Schmidt 

number the concentration decreases. Diffusion 

coefficient is inversely 

 
Fig. 5  (a) Velocity, (b) Temperature and (c) Concentration 
profiles for different values of heat generation/absorption 

parameter ∆ with fixed values of  ࢇࡰ = . ૡ, ࢀ࢘ࡳ = . ,ࡾ = . , ࢘ࡼ = . , ࢉࡿ = . 	ࢊࢇ	࢞࢘ࡷ = . . 
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Fig. 6  Temperature profiles for different values of Prandtl 
number Pr with fixed values of Da = 0.8, GrT = 0.5, R = 0.5, 

 = 0.5, NR = 1.0, Sc = 0.5, and Krx = 0.02. 

Fig. 7  Temperature profiles for different values of 

radiation parameter ࡾࡺwith fixed values of Da = 0.8, GrT = 

0.5, R = 0.5,  = 0.5, Pr = 1.0, Sc = 0.5, and Krx = 0.02. 
 

proportional to the Schmidt number. A smaller 

diffusion coefficient corresponds to an increase in 

Schmidt number. Such smaller diffusion coefficient 

creates a reduction in the concentration. 

Fig. 9 illustrate the effect of the chemical reaction 

parameter on the concentration profile. From Fig. 9, it 

is clearly seen that the concentration and its associated 

boundary layer thickness are decreasing functions of 

chemical reaction. Chemical reaction increases the rate 

of interfacial mass transfer. The concentration gradient 

and its flux increasing when the chemical reaction 

reduces the local concentration. Finally, with an 

increase in the chemical reaction parameter the 

concentration of the chemical species in the boundary 

layer decreases.  

 
Fig. 8  Concentration profiles for different values of 

Schmidt number ࢉࡿ with fixed values of Da = 0.8, GrT = 

0.5, R = 0.5,  = 0.5, Pr = 1.0, NR = 0.5, and Krx = 0.02. 

 
Fig. 9  Concentration profiles for different values of 

chemical reaction ࢞࢘ࡷ with fixed values of Da = 0.8, GrT = 

0.5, R = 0.5,  = 0.5, Pr = 1.0, NR = 0.5, and Sc = 0.5. 
 

Fig. 10 illustrates the effect of the Darcy number Da 

on the skin-friction versus the local Reynolds number. 

With an increase the Darcy number the skin-friction 

increase along the local Reynolds number. This is 

because that a porous media produces a resistive type 

of force which causes the increase of the skin-friction. 

Fig. 11 represents the effect of the radiation parameter ோܰ  on the Nusselt number ܰݑ௫  along the local 

Reynolds numberܴ݁௫ . With an increase the thermal 

radiation parameter, the Nusselt number ܰݑ௫ 

increases along the local Reynolds number. This is due 

to fact that for increasing thermal radiation larger heat 

transfer rates are achieved. Also, with an increase the 

chemical reaction Krx the local Sherwood number Shx 

decrease along the local Reynolds number Rex. This is 
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generation parameter result in higher velocity and 

temperature distributions and lower concentration 

distribution. For the higher absorption the velocity and 

temperature decrease. The concentration gradient and 

its flux increasing when the chemical reaction reduces 

the local concentration. Finally, with an increase in the 

chemical reaction parameter the concentration of the 

chemical species in the boundary layer decreases. A 

fluid with large Prandtl number possesses large heat 

capacity, and hence augments the heat transfer. 

Moreover, as the thermal radiation increase larger heat 

transfer rate is achieved as well as the chemical 

reaction increase smaller mass flow rate is achieved. 
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