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A Consumption-Saving Model in the Infinite Time Horizon 
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Abstract: This paper deals with the consumption-saving model in the infinite time horizon with the Epstein-

Zin-Weil aggregator function. We formulate the dynamic recursive optimality equation, find the value function and 

the optimal policy of a consumer. We also provide some examples. 
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1. Introduction 

Recursive utility models of Kreps and Porteus (1978) and models presented in the literature of asset valuation 

by Epstein and Zin (1989) and others represent investor preferences as a solution to a nonlinear, forward looking 

functional equation. Preferences such as those given in Becker R. A. & Boyd III H. J. (1997) and Miao J. (2014) are 

used in economic dynamics because they constitute a convenient tool for changing risk aversion while maintaining 

the same elasticity of intertemporal substitution (EIS). In this article, I deal with the consumption model considered 

in an infinite time horizon. We are considering a decision problem in which the investor has to decide at every step 

how much to consume and how much to invest in the future, see Stokey N., Lucas R., and Prescott E. (1989). We 

solve this problem by examining models with a finite horizon. We show that under a mild assumption, the sequence 

of value functions obtained for problems with a finite time horizon converges as the time horizon approaches infinity. 

It turns out that the limit is equal to the value function over an infinite time horizon. We prove that the value function 

satisfies the so-called optimality equation and we calculate the optimal policy. 

2. The Model and Results 

2.1 Elasticity of Intertemporal Substitution 

Preferences over a consumption bundle 𝑐 =  (𝑐𝑡)𝑡=1
∞

 at different points in time should be represented by a 

utility function of the form 

𝑈(𝑐)  =  𝑈(𝑐1, 𝑐2,…) 

If we put 𝑡𝑐 = (𝑐𝑡, 𝑐𝑡+1); then 𝑈(𝑐)  =  𝑈(1𝑐). Let us define 

𝑈𝑡 =
𝜕𝑈( 𝑡𝑐)

𝜕𝑐𝑡
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Elasticity of intertemporal substitution (EIS) between consecutive dates 𝑡 and 𝑡 +  1 

is an evaluation of 

𝐸𝐼𝑆 = |
𝑑𝑙𝑛(𝑐𝑡+1 𝑐𝑡⁄ )

𝑑𝑙𝑛(𝑈𝑡 + 1 𝑈𝑡⁄ )
| 

In microeconomics the quotient 𝑈𝑡 + 1 𝑈t⁄  is interpreted as the ratio of prices of consumption of one unit of a 

single good in periods 𝑡 +  1 and 𝑡.  

Note that 

𝑑 𝑙𝑛(𝑐𝑡 + 1 𝑐𝑡⁄ ) =
𝑑(𝑐𝑡 + 1 𝑐𝑡⁄ )

𝑐𝑡 + 1 𝑐𝑡⁄
 

And 

𝑑 𝑙𝑛(𝑈𝑡 + 1 𝑈𝑡⁄ )  =
𝑑(𝑈𝑡 + 1 𝑈𝑡⁄ )

𝑈𝑡 + 1 𝑈𝑡⁄
 

Moreover, by Appendix A 

𝑑 𝑙𝑛(𝑈𝑡 𝑈𝑡 + 1⁄ ) =
𝑑(𝑈𝑡 𝑈𝑡 + 1⁄ )

𝑈𝑡 𝑈𝑡 + 1⁄
= −𝑑 𝑙𝑛(𝑈𝑡 + 1 𝑈𝑡⁄ ) 

Therefore, EIS can be expressed as follows 

𝐸𝐼𝑆 = |
𝑑𝑙𝑛(𝑐𝑡+1 𝑐𝑡⁄ )

𝑑𝑙𝑛(𝑈𝑡 𝑈𝑡+1⁄ )
| 

𝐸𝐼𝑆 measures the relative change of consumption from period 𝑡 to period 𝑡 + 1with respect to the relative 

change of utility following from the change of consumption. Generally, EIS depends on the level of consecutive 

consumptions. However, there are utility functions for each this quantity is constant. Further, we shall consider the 

recursive utility that has constant elasticity of intertemporal substitution. In 1983, Epstein and Hynes introduced the 

following aggregator: 

𝑊(𝑧1;  𝑧2) =  ((1 − 𝛽)𝑧1
𝜌
 +  𝛽𝑧2

𝜌
)
1 𝜌⁄

          (1) 

where 𝛽 ∈  [0,1) is a subjective discount factor and 𝜌𝜖 (0;  1). 

Theorem 1. For the recursive utility described by the recurrence equation 

𝑈(𝑐)  =  𝑊(𝑐1;  𝑈(2𝑐))  =  ((1 − 𝛽)𝑐1
𝜌
 +  𝛽(𝑈(2𝑐)𝜌))1 𝜌⁄  

EIS is constant and equals 
1

1−𝜌
  

Proof. Let us consider 

𝑈(𝑡𝑐) =  ((1 − 𝛽)𝑐 𝑡
𝜌
+  𝛽(𝑈(𝑡 + 1𝑐))

𝜌
)
1 𝜌⁄

 

We find that 

𝑈𝑡 ≔
𝜕𝑈( 𝑡𝑐)

𝜕𝑐𝑡
= ((1 − 𝛽)𝑐 𝑡

𝜌
+  𝛽(𝑈(𝑡 + 1𝑐))

𝜌
)

1

𝜌
−1
(1 − 𝛽)𝑐𝑡

𝜌−1
 

Hence, 

𝑈𝑡 =
(1 − 𝛽)(𝑈(𝑡𝑐))

1−𝜌

𝑐𝑡
1−𝜌  

In an analogous manner we obtain 
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𝑈𝑡 + 1 =
(1 − 𝛽)(𝑈(𝑡 + 1𝑐))

1−𝜌

𝑐𝑡+1
1−𝜌  

We get 

(
𝑐𝑡+1
𝑐𝑡
)
1−𝜌

(
𝑈( 𝑡𝑐)

𝑈( 𝑡 + 1𝑐)
)

1−𝜌

=
𝑈𝑡
𝑈𝑡+1

 

and consequently, 

𝑐𝑡+1

𝑐𝑡
= (

𝑈𝑡

𝑈𝑡+1
)

1

1−𝜌 𝑈( 𝑡+1𝑐)

𝑈( 𝑡𝑐)
                                      (2) 

Hence, 

𝑑(𝑐𝑡+1 𝑐𝑡⁄ )

𝑑(𝑈𝑡 𝑈𝑡+1⁄ )
=

1

1−𝜌
(
𝑈𝑡

𝑈𝑡+1
)

1

1−𝜌
−1 𝑈( 𝑡+1𝑐)

𝑈( 𝑡𝑐)
                    (3) 

Moreover, from equation (2) it follows that 

𝑈( 𝑡 + 1𝑐)

𝑈( 𝑡𝑐)
=
𝑐𝑡+1
𝑐𝑡

(
𝑈𝑡+1
𝑈𝑡

)

1

1−𝜌

 

Plugging this expression in (3) yields 

𝑑(𝑐𝑡+1 𝑐𝑡⁄ )

𝑑(𝑈𝑡 𝑈𝑡+1⁄ )
=

1

1 − 𝜌
(
𝑈𝑡
𝑈𝑡+1

)

1

1−𝜌
−1

(
𝑈𝑡+1
𝑈𝑡

)

1

1−𝜌

=
1

1 − 𝜌

𝑐𝑡+1
𝑐𝑡

𝑈𝑡+1
𝑈𝑡

 

Therefore, we conclude 

𝑑(𝑐𝑡+1 𝑐𝑡⁄ )

𝑐𝑡+1 𝑐𝑡⁄

𝑑(𝑈𝑡 𝑈𝑡+1⁄ )

𝑈𝑡 𝑈𝑡+1⁄

=
1

1 − 𝜌
⟹

𝑑𝑙𝑛(𝑐𝑡+1 𝑐𝑡⁄ )

𝑑𝑙𝑛(𝑈𝑡 𝑈𝑡+1⁄ )
=

1

1 − 𝜌
 

2.2 Consumption-Saving Model 

We shall consider a model in discrete time, i.e., 𝑡 ∈ 𝑇 ∶=  ℕ.  In period 𝑡 ∈ 𝑇 a consumer faces a single good 

𝑥 ≥ 0. The agent decides how much to consume, i.e., he/she takes 𝑐𝑡 ∈ 𝐴(𝑥𝑡)  =  [0;  𝑥𝑡]. The remaining part 𝑦𝑡 =

𝑥𝑡− 𝑐𝑡  is invested for the next period. The satisfaction of consumption 𝑐𝑡  is measured by one-period utility 

𝑢(𝑐𝑡)  =  𝑐𝑡 with 𝜌 ∈  (0;  1]. 

Moreover, a production function that relates output to input is of the following form 

𝑥𝑡+1  = 𝑅𝑡+1𝑦𝑡  = 𝑅𝑡+1(𝑥𝑡 − 𝑐𝑡)        (4) 

where (𝑅𝑡) is a sequence of i.i.d. random shocks with non-negative values. Assume that 𝑅 has the same distribution 

𝑅𝑡  and its expected value 𝐸𝑅 is finite. 

It is assumed that the agent uses an aggregator introduced by Epstein and Hynes (1983) in order to aggregate 

a future utility, say 𝑦2, and a current utility 𝑦1; i.e., 

𝑊(𝑧1, 𝑧2) = ((1 − 𝛽)𝑧1
𝜌
+ 𝛽𝑧2

𝜌
)
1 𝜌⁄

 

where 𝛽𝜖 [0;  1) is a subjective discount factor. 𝐽(𝑥) is the value function, i.e., the optimal utility in the model 

with the infinite time horizon, if the initial amount of a good is 𝑥 ≥ 0. In addition, the decision maker uses the 

following: conditional certainty equivalent due to Kreps and Porteus (1978) to evaluate future utility, i.e., 𝑧2 =
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 (𝐸𝑡(𝐽(𝑋𝑡+1)
𝛾)1 𝛾⁄ .  

Here, 𝛾 > 0 is a consumer risk sensitivity coefficient and 𝐸𝑡  is the expectation operator given the information 

up to t-stage. 

Put 𝐽0(𝑥)  ≡ 0 for each 𝑥 ≥ 0. Let 𝐽𝑘(𝑥) be the optimal utility at the stage k; if the initial state is x. Due to 

dynamic programming method [5], we evaluate 𝐽𝑘 in recursive manner as follows 

𝐽𝑘+1(𝑥) = max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸𝑘(𝐽𝑘(𝑦))
𝛾)𝜌 𝛾⁄ ]

1 𝜌⁄
 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸𝑘(𝐽𝑘(𝑅𝑘+1(𝑥 − 𝑐)))
𝛾
)
𝜌 𝛾⁄
]
1 𝜌⁄

 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸(𝐽𝑘(𝑅(𝑥 − 𝑐)))
𝛾
)
𝜌 𝛾⁄
]
1 𝜌⁄

    (5) 

where we make use of (4). Hence, the decision maker his/her utility in the consumption- saving model faces 

the following decision problems: 

1. step: 𝐽1(𝑥) =  max
𝑐∈𝐴(𝑥)

(1 − 𝛽)1 𝜌⁄ 𝑢(𝑐) =  (1 − 𝛽)1 𝜌⁄ 𝑥.   The function that maximizes the equation is 

𝑐1(𝑥)  =  𝑥. 

2. step: put 𝐶 ∶=  𝐸(𝑅𝜌)𝜌 𝛾⁄ , 

𝐽2(𝑥) = max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸1(𝐽1(𝑦))
𝛾)𝜌 𝛾⁄ ]

1 𝜌⁄
 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸((1 − 𝛽)1 𝜌⁄ 𝑅(𝑥 − 𝑐))
𝛾
)
𝜌 𝛾⁄

]
1 𝜌⁄

 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(1 − 𝛽)(𝑥 − 𝑐)𝜌𝐸(𝑅𝛾)𝜌 𝛾⁄ ]
1 𝜌⁄

 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑥𝑎𝜌 + 𝛽(1 − 𝛽)(𝑥 − 𝑥𝑎)𝜌𝐸(𝑅𝛾)𝜌 𝛾⁄ ]
1 𝜌⁄

 (assume 𝑐(𝑥) = 𝑎𝑥) 

= 𝑥(1 − 𝛽)
1
𝜌⁄ max
𝑎𝜖[0,1]

[𝑎𝜌 + 𝛽(1 − 𝑎)𝜌𝐶]1 𝜌⁄  

= 𝑥(1 − 𝛽)1 𝜌⁄ [1 + (𝛽𝐶)
1

1−𝜌]

1−𝜌

𝜌

 

the constant a that maximises the right-hand side is 𝑎2 =
1

1+(𝛽𝐶)
1

1−𝜌

 thus 𝑐2(𝑥) =
𝑥

1+(𝛽𝐶)
1

1−𝜌

 (see Appendix); 

3. step: 

𝐽3(𝑥) = max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸2(𝐽2(𝑦))
𝛾)𝜌 𝛾⁄ ]

1 𝜌⁄
 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸 {(1 − 𝛽)1 𝜌⁄ [1 + (𝛽𝐶)
1

1−𝜌]

1−𝜌

𝜌

𝑅(𝑥 − 𝑐)}

𝛾

)

𝜌 𝛾⁄

]

1 𝜌⁄

 

= max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)(𝑥𝑎)𝜌 + 𝛽(1 − 𝛽) [1 + (𝛽𝐶)
1

1−𝜌]
1−𝜌

(𝑥 − 𝑥𝑎)𝜌𝐸(𝑅𝛾)𝜌 𝛾⁄ ]

1 𝜌⁄

 



A Consumption-Saving Model in the Infinite Time Horizon 

 525 

= 𝑥(1 − 𝛽)
1
𝜌⁄ max
𝑎𝜖[0,1]

[𝑎𝜌 + 𝛽(1 − 𝑎)𝜌 [1 + (𝛽𝐶)
1

1−𝜌]
1−𝜌

𝐶]

1 𝜌⁄

 

= 𝑥(1 − 𝛽)
1
𝜌⁄ [1 + (𝛽𝐶)

1

1−𝜌 + (𝛽𝐶)
2

1−𝜌]

1−𝜌

𝜌

 

the constant a that maximizes the right-hand side is 𝑎3 =
1

1+(𝛽𝐶)
1

1−𝜌+(𝛽𝐶)
2

1−𝜌

.  

Hence, by induction we conclude that n step: 

𝐽𝑛(𝑥) =  𝑥(1 − 𝛽)
1
𝜌⁄ [1 + (𝛽𝐶)

1

1−𝜌 + (𝛽𝐶)
2

1−𝜌 +⋯+ (𝛽𝐶)
𝑛−1

1−𝜌]

1−𝜌

𝜌

 

and the optimal policy that maximises the decision problem 𝑎𝑡 n-the step is 

𝑎𝑛 =
1

1 + (𝛽𝐶)
1

1−𝜌 + (𝛽𝐶)
2

1−𝜌 +⋯+ (𝛽𝐶)
𝑛−1

1−𝜌

 

In order to show the existence of a solution to the optimality equation in the infinite time horizon we need to 

impose the following assumption: 

(A) 𝛽1 𝜌⁄ 𝐸(𝑅𝛾)1 𝛾⁄ < 1. 

Note that the sequence (𝐽𝑛(𝑥))𝑛   is non-decreasing for every 𝑥 ≥ 0, since (A) implies that 

 𝛽𝐶 < 1. Therefore, lim
𝑛→∞

𝐽𝑛(𝑥) exists and by (A) 

J(x) ≔ lim
𝑛→∞

𝐽𝑛(𝑥) =  𝑥(1 − 𝛽)
1
𝜌⁄ [

1

1−(𝛽𝐶)
1

1−𝜌

]

1−𝜌

𝜌

    (6) 

Making use of (5) and the form of t the value function in the finite horizon, we obtain 

𝐽𝑛+1(𝑥) ≥ 

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸 {𝑅(𝑥 − 𝑐)(1 − 𝛽)1 𝜌⁄ [1 + (𝛽𝐶)
1

1−𝜌 +⋯+ (𝛽𝐶)
𝑛−1

1−𝜌]

1−𝜌

𝜌

}

𝛾

)

𝜌 𝛾⁄

]

1 𝜌⁄

 

for every 𝑐𝜖𝐴(𝑥).  

By allowing n tend to infinity in the above display we conclude that 

𝐽(𝑥) ≥ 

[
 
 
 
 
 

(1 − 𝛽)𝑐𝜌 + 𝛽

(

 
 
𝐸

{
 

 
𝑅(𝑥 − 𝑐)(1 − 𝛽)1 𝜌⁄ [

1

1 − (𝛽𝐶)
1

1−𝜌

]

1−𝜌

𝜌

}
 

 
𝛾

)

 
 

𝜌 𝛾⁄

]
 
 
 
 
 
1 𝜌⁄

 

= [(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸{𝐽(𝑅(𝑥 − 𝑐))}
𝛾
)
𝜌 𝛾⁄
]
1 𝜌⁄

 

for every 𝑐𝜖𝐴(𝑥).: Hence, it holds 
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𝐽(𝑥) ≥ max
𝑐𝜖𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸{𝐽(𝑅(𝑥 − 𝑐))}
𝛾
)
𝜌 𝛾⁄
]
1 𝜌⁄

   (7) 

for all 𝑥 ≥ 0. 

Now consider the problem of maximization in (7). Again, suppose that the function that maximizes right side 

has the form 𝑐∗(𝑥)  =  𝑎∗𝑥: Hence, max 

max
𝑐𝜖𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽(𝐸{𝐽(𝑅(𝑥 − 𝑐))}
𝛾
)
𝜌 𝛾⁄
]
1 𝜌⁄

= 

max
𝑐𝜖[0,1]

𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 
 
 

𝑎𝜌 + 𝛽

(

 
 
𝐸

{
 

 
𝑅(1 − 𝑎)(

1

1 − (𝛽𝐶)
1

1−𝜌

)

1−𝜌

𝜌

}
 

 
𝛾

)

 
 

𝜌 𝛾⁄

]
 
 
 
 
 
1 𝜌⁄

= 

max
𝑐𝜖[0,1]

𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 
𝑎𝜌 + 𝛽(1 − 𝑎)𝜌 (

1

1 − (𝛽𝐶)
1

1−𝜌

)

1−𝜌

𝜌

{𝐸𝑅𝛾}𝜌 𝛾⁄

]
 
 
 
1 𝜌⁄

= 

max
𝑐𝜖[0,1]

𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 

𝑎𝜌 + (1 − 𝑎)𝜌
𝛽𝐶

(1 − (𝛽𝐶)
1

1−𝜌)
1−𝜌

]
 
 
 
1 𝜌⁄

 

 

From Appendix A, it follows that 

𝑎∗ =
1

1 +(
𝛽𝐶

(1−(𝛽𝐶)
1

1−𝜌)

1−𝜌)

1

1−𝜌

=
1

1 +
(𝛽𝐶)

1
1−𝜌

1−(𝛽𝐶)
1

1−𝜌

= 1 − (𝛽𝐶)
1

1−𝜌 

Note that 𝑎∗  = lim
𝑛→∞

𝑎𝑛.On the other hand, plugging 𝑐∗(𝑥) in (7) we obtain that  

𝐽(𝑥) ≥ 𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 

𝑎∗𝜌 + (1 − 𝑎∗)𝜌
𝛽𝐶

(1 − (𝛽𝐶)
1

1−𝜌)
1−𝜌

]
 
 
 
1 𝜌⁄

 

= 𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 

(1 − (𝛽𝐶)
1

1−𝜌)
𝜌

+ (𝛽𝐶)
𝜌

1−𝜌
𝛽𝐶

(1 − (𝛽𝐶)
1

1−𝜌)
1−𝜌

]
 
 
 
1 𝜌⁄

 

= 𝑥(1 − 𝛽)1 𝜌⁄

[
 
 
 

(1 − (𝛽𝐶)
1

1−𝜌)
𝜌

+
(𝛽𝐶)

1

1−𝜌

(1 − (𝛽𝐶)
1

1−𝜌)
1−𝜌

]
 
 
 
1 𝜌⁄
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= 𝑥(1 − 𝛽)1 𝜌⁄ [
1

1 − (𝛽𝐶)
1

1−𝜌

]

1−𝜌

𝜌

= 𝐽(𝑥) 

Summarising our considerations, we can formulate the following result. 

Theorem 2. Assume (A). Then, the function 𝐽(𝑥) in (6) is a solution to the optimality equation, i.e., it holds 

𝐽(𝑥) = max
𝑐∈𝐴(𝑥)

[(1 − 𝛽)𝑐𝜌 + 𝛽 (𝐸 (𝐽(𝑅(𝑥 − 𝑐)))
𝛾
)

𝜌

𝛾
]

1 𝜌⁄

 

and the function 𝑐∗(𝑥) = 𝑥 (1 − (𝛽𝐸(𝑅𝛾)𝜌 𝛾⁄ )
1

1−𝜌)  that attains the maximum in the above equation 

constitutes the optimal policy, i.e., at each step it is optimally to consume 

 𝑎∗ = 1 − (𝛽𝐸(𝑅𝛾)𝜌 𝛾⁄ )
1

1−𝜌 of a current stock for investor.  

The value function J(x) can be obtained as a limit of the sequence of value functions obtained in the models 

with finite time horizon. 

3. Examples 

In this section, we draw a function 

𝜌 → 1 − (𝛽𝐸(𝑅𝛾)𝜌 𝛾⁄ )
1

1−𝜌 

for different values of 𝜌. Let us set 𝑎∗(𝜌) = 1 − (𝛽𝐸(𝑅𝛾)𝜌 𝛾⁄ )
1

1−𝜌. As argued in ([8]) the coefficient 𝛾𝜖(0,1) 

is responsible for the risk attitude of the agent. If 𝛾 is close to one, then the decision maker becomes risk neutral. 

If, on the other hand, 𝛾 is close to zero, then the decision maker becomes risk averse. 

We consider two examples. 

R has the uniform distribution 𝑈(0,5;  1,6). Then, 𝐸𝑅 =  1,05 and 𝑉𝑎𝑟𝑅 =  0,1. 

Thus 
 

Fig. Risk coefficient 𝛾 𝜌 𝛽 

1 𝛾 = 0,5 
𝜌 = 0,3 

𝜌 = 0,5 
0,95 

2 
𝛾 = 1 

𝛾 = 0,1 
𝜌 = 0,5 0,95 

 

In both cases, the red curve is above the blue one. In other words, the risk averse agent prefers to consume 

more and invest less when compared with the agent that cares less about the volatility of the future payoff. Moreover, 

two instances show that all functions 𝑎∗(𝜌) are increasing. llearly, when 𝜌  increases, then EIS does as well. 

Distance between curves is big. A lower 𝐸𝐼𝑆 value causes the consumption to be twice as high. We can see the 

significant influence of this factor on the optimal strategy. In the Drawings 2 the impact of the risk factor on 

consumption strategies was analyzed (investment), when the elasticity coefficient of intertemporal substitution is 

constant and equals 2. The red curves reflect the case of a risk sensitive investor, and the blue curves are plotted for 

a risk neutral trader. In all cases, the red curves lie above the blue curves. Value differences the γ coefficient cause 

smaller differences in the consumption value than the change in value the coefficient ρ. 
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Figure 1  The function 𝝆 → 𝒂∗(𝝆) 

 

 
Figure 2  The function 𝝆 → 𝒂∗(𝝆) 
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Appendix 

A. Logarithmic Derivative 

Let 𝑓: 𝑅 →  𝑅 be a differentiable function. Then, we have 

𝑑𝑙𝑛𝑓(𝑥)

𝑑𝑥
=
𝑓′(𝑥)

𝑓(𝑥)
 

Hence, 

𝑑𝑙𝑛𝑓(𝑥) =
𝑓′(𝑥)𝑑𝑥

𝑓(𝑥)
=
𝑑𝑓(𝑥)

𝑓(𝑥)
⟹ 𝑑𝑙𝑛𝑓 =

𝑑𝑓

𝑓
 

Moreover, 

𝑑𝑙𝑛(1 𝑓(𝑥))⁄

𝑑𝑥
= −

1

1 𝑓(𝑥)⁄
(
1

𝑓(𝑥)
)
2

𝑓′(𝑥) = −
𝑓′(𝑥)𝑑𝑥

𝑓(𝑥)
 

and consequently, 

𝑑𝑙𝑛(1 𝑓⁄ ) = −
𝑑𝑓

𝑓
 

B. Function Maximization 

In our examples we deal with the maximization of the following function: 

𝑓(𝑥) =  (𝑎𝑥𝜌 +  𝑏(1 − 𝑥)𝜌)1 𝜌⁄  where 𝜌𝜖 (0;  1), 𝑎, 𝑏 >  0, 𝑥 ∈  [0;  1]. 

Since the function 𝑧 → 𝑧1 𝜌⁄   is increasing (because 1 𝜌⁄ >  0), it suffices to consider the maximisation of the 

function 

𝑓0(𝑥)  =  𝑎𝑥𝜌 +  𝑏(1 − 𝑥)𝜌 

The first order condition yields 

𝑓0
′(𝑥) =  𝜌𝑎𝑥𝜌−1 +  𝜌𝑏(1 − 𝑥)𝜌−1 = 0 

Hence, for 𝑥 ≠  1 and 𝑥 ≠  0 it follows that 

𝑎

𝑥1−𝜌
=

𝑏

(1 − 𝑥)1−𝜌
⟹ (1− 𝑥)𝑎

1

1−𝜌 = 𝑥𝑏
1

1−𝜌 

Hence, 

𝑥𝑚𝑎𝑥 =
𝑎

1

1−𝜌

𝑎
1

1−𝜌 + 𝑏
1

1−𝜌

=
1

1 − (
𝑏

𝑎
)

1

1−𝜌

 

The function 𝑓0 is the sum of two strictly concave functions, and therefore, 𝑓0 is strictly concave. Thus, the 

function f at 𝑥𝑚𝑎𝑥  attains the maximum. 

 


