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Abstract: Drought monitoring is a key element of current drought preparedness approaches, providing critical information on recent 

conditions that can be used to trigger mitigation actions to lessen the impact of this natural threat. Drought can be both complex and 

challenging to monitor since it lacks a single universal definition, which makes findings intricate. Three effective and significantly 

grounded explanations were developed to differentiate and categorise drought types; namely, meteorological, agricultural, and 

hydrologic drought. Quite a lot of satellite-based drought indices have so far been suggested for regional and national levels. 

Meteorological and satellite-based indices are used to find diverse drought phenomena, including meteorological, agricultural and 

hydrological drought. The current remote sensing advancements have both confirmed useful for drought monitoring and prediction 

where some indicators provide a limited view of drought conditions, concentrating on vegetation health and agricultural drought. 

Several satellite-based remote sensing instruments have been advanced for drought monitoring and early warning. The numerous 

meteorological variables (indicators) such as precipitation, temperature, humidity and evapotranspiration are required to calculate 

drought severity level. The long-term historical records of satellite imagery and climatic data are essential to calculate drought severity 

levels and to determine drought risk-prone ranges. Recently quite a lot of satellite imagery has proven useful in agricultural drought 

assessment. Thus, the significance of new developed remote sensing-derived based drought indices will come to reality if researchers 

and experts for drought monitoring can come out with a new approach to integrating indices that will address both long-term and 

short-term drought effects concerning in-situ and satellite data to support the actualization of the SDG targets 2.4 by 2030 and 13.1, 

13.2. 
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1. Introduction  

Drought is a complex, natural recurring hazard with 

slow onset affecting large zones with major 

wide-ranging impacts on many sections of society, 

including the environment, society, agriculture, energy, 

health, hydropower generation, water supply, 

economic and other natural phenomena [1, 2]. In quite 

a lot of areas in the world, drought is a common, 

recurring natural event that has significant, detrimental, 
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economic and environmental shocks. Drought has 

added more widespread effects than any other natural 

tragedies (floods, landslides, strong wind etc.) and 

slows down over periods that are impressed by 

short-term measures, and difficult to be detected and 

determine its impact extent [3-5]. The U.S estimated 

annual drought impact to be over $6-8 billion [6]. The 

drought is well thought-out as the most complex 

phenomenon globally and is grouped into four classes 

into four [7] are; meteorological droughts (lack of 

precipitation), which resulted in the shortage of 

accessible soil water for plant growth [8, 9]; 

agricultural droughts (shortage in soil moisture, and 
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vegetation response), it causes deficit of soil water that 

lead to significant damage of agricultural ecosystems 

(e.g., Crop produce) [10-12]; hydrological droughts 

(deficit in the runoff, streamflow, or groundwater 

storage), denotes to groundwater decrease and absence 

of surface water which affect water resources 

distribution; socioeconomic droughts (community 

responses to water supply and demand) [13, 14]. 

Consequently, the remote sensing-based drought 

techniques remained the most efficient base for 

analysis and prediction of hydrometeorological 

perspective using data like precipitation, vegetation, 

ground surface temperature, soil moisture, and 

evapotranspiration for monitoring and application. 

However, these drought indices are useful depending 

on the data collection limitations, topography, weather 

condition, and water facilities source. The numerous 

drought indicators related to precipitation, soil 

moisture, vegetation health, and surface and 

groundwater have been analysed to define specific 

cases of drought together in efforts with another 

package like U.S. Drought Monitor (USDM) [15]. 

Remote-sensing imagery has been active from 

different facial terms of weather and climatology 

studies. The Television Infrared Observation Satellite 

(TRIOS-1) was the first meteorological satellite 

launched in the 1960s, since from that period the new 

epoch of land monitoring, opened the means to new 

development of other satellites such as the Advanced 

Very High-Resolution Radiometer (AVHRR), Landsat, 

and the Geostationary Operational Environmental 

Satellites (GOES). which overcome the limitations of 

gauge-based meteorological observation and drought 

monitoring purposes. The Satellite-based drought 

indices are capable of describing the spatial 

unpredictability of drought, they became the most 

reliable tools for drought monitoring and prediction at 

regional scales [16]. To reduce the ambiguity of 

satellites, drought monitoring has been tried using the 

combination of satellite and ground data for integration 

[1, 17]. 

More often than not, the application of satellite data 

in drought studies can be classified into two categories: 

an atmospheric perspective, which concentrates on 

obtaining drought-related atmospheric variables (e.g., 

Precipitation or relative humidity) from satellites as 

well as a land surface perspective, which related with 

earth surface. Different drought indices have been 

technologically advanced to measure a drought 

strength, magnitude and weakness from a different 

continent, which is often used in an effective approach 

in various fields to analyse sectoral drought attributes 

like frequency, harshness, and duration. To exemplify 

the contests, during the last two decades, drought 

indices (IDs) have been divided into Climatic or 

Satellite-derived (IDs), from regional to global scale 

assessment, and monitoring has been advanced and 

implemented. For example, the single index cannot 

describe the drought complication fully, but different 

drought indices are combined to develop for success 

[18]. 

Through modification of the normalized difference 

vegetation index (NDVI) by normalizing NDVI after 

seeing the possible maximum and minimum of an 

ecosystem the vegetation index VCI was developed 

[19]. The vegetation health index VHI and soil wetness 

shortage index SWDI were developed using NDVI and 

land surface temperature (LST) (VHI; [16] (SWDI; 

[20]). However, the scaled drought condition index 

was generated from LST, NDVI, and Tropical Rainfall 

Measuring Mission (TRMM) precipitation (SDCI) [21, 

22]. The SDCI detects meteorological and agricultural 

droughts index in both humid and arid regions when 

compared to the U.S. Drought Monitor (USDM) data. 

The microwave integrated drought index is a 

short-term drought index that combines LST, NDVI, 

and soil moisture (MIDI) [23, 24]. Temperature 

Condition Index (TCI), Enhanced Vegetation Index 

(EVI), was organized to measure the drought effect on 

the Soil and or natural vegetation covered. To evaluate 

the severity of drought, the previous studies participate 

in deliberate various indices, of which the PDSI 
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(Palmer Drought Severity Index) and SPI 

(Standardized Precipitation Index) indexes are the most 

widely used [25]. Where PDSI designs require many 

parameters, including precipitation, air temperature, air 

pressure, soil moisture, etc. While the SPI is a 

physically-based drought index, the higher density of 

data needed in the calculating process limits the 

extensive use of PDSI because the majority of the 

research extents cannot contain the data and parameter 

requirements [26]. The purpose of this research is to 

identify the recent advancements in drought indices 

using remote sensing satellite-based techniques. Which 

will eventually be performed by conducting a 

spatiotemporal comparative review of myriad drought 

indices to identify the most accepted use. 

1.1 Need for Drought Research 

Looking at the complex nature of drought on 

precipitation levels for planning and management, 

studying drought has a significant role in freshwater 

assessment. There is a need for a critical understanding 

of historical droughts’ nature in a particular area or the 

region as well as its behavioural occurrences. 

Therefore, different ideas about droughts will be of 

outstanding significance for the model’s development 

for investigating the diverse drought nature as well as 

the current argument. Due to its advances in global 

drought changes in recent years [13]. Therefore, this 

review paper necessitated highlighting recent 

improvements in the drought index using remote 

sensing techniques based on meteorological, 

agricultural or hydrological drought features, and the 

necessary indices used to describe its reality. In 

improver, the review will provide an overview of 

indices applied to describe water accessibility in the 

ecosystem from the arenas of application mentioned 

above. Nevertheless, more than 50 publications, mostly 

related to remote sensing-derived based and climate 

drought indices were critically reviewed and cited in 

this clause Fig. 1. So, sometimes indices are reported as 

“physiologically-based” as the upshot of the associated 

literature and further questions whether some indices 

can be considered more appropriate than each of the 

above applications mentioned [27]. Thus, the early 

warning drought system (EWDS) is well projected to 

handle any drought event, lack of adequate planning 

and readiness, the foreseeing danger of drought is more 

alarming to the ecosystem [28, 29]. 
 

 
Fig. 1  Show the percentage of the reviewed article based on countries. 

 

2. Methods 

At the moment, several methods for drought 

monitoring are on the frontline; (In-situ, remote 

sensing, and synergy-based indices), theca methods are 

mathematically represented by integrating different 

variables of studying drought in either quantitative or 

qualitative means to overcome the use of field data 
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directly [30]. Thus, many countries of the world come 

out the modern framework for drought monitoring and 

mitigation based on the social, economic, and 

environment at large [31], in which most of the studies 

depends on the use of a single data sources [31], this 

result to limited spatial and temporal resolution. In fact 

base, the single data sources used by many countries of 

the world resulted in the development and application 

so many methods that link the data from various 

sources for better and improved high spatial and 

temporal data quality for research [32]. 

2.1 Drought Monitoring Tools 

Drought is described as the limitation or deficiency 

of precipitation over a stipulated period, causing stress 

to bodily processes, groups and the environment [13]. 

The in-situ can provide accurate results if properly 

applied during the measurement, and having 

shortcomings in spatial dynamics over a big area [33], 

to address this problem, the remote sensing approach is 

the best option because the program holds the ability to 

traverse large regions at a near temporal frequency. 

Nevertheless, it depends fully on the reflected/emitted 

energy of the objects, so the answer might change when 

compared with the in-situ derived results. Nevertheless, 

the even with the research carried on using remote 

sensing-based drought indices, there are still several 

challenges ahead that need to be addressed, few among; 

Monitoring small areas with limited in-situ data during 

the observation, consistency on the historic datasets to 

improve remote sensing-based forecasting techniques, 

mixing the past satellite sensors from a different 

platform, and developing comprehensive/standard 

validating scheme. 

The in-situ observations are a representation of the 

ground measured conditioned point based on discrete 

geographic location, most of the traditional drought 

monitoring indicators fully depend on; meteorological 

(temperature and precipitation data), hydrologic 

parameters (e.g., soil moisture, groundwater, flow and 

reservoir levels) are capable to provide quantitative and 

quantitative derived information over an area. Thus, 

the estimation [34] provide by the indices are accurate 

during data acquisition in the field some example is; (i) 

Palmer drought severity index (PSDI) applied to 

precipitation and temperature [35]; (ii) Crop Mixture 
 

Table 1  Some common selected remote sensing-based drought indices conducted in research publication. 

Citation Subject area Indices/ 

Model 

Data/Sensors Strength Restriction Region 

Abiodun et al., 2018; 

Anand et al., 2018; Ari 

et al., 2018; Brema et 

al., 2019; De Sousa et 

al., 2015; Elhag & 

Zhang, 2018; Jiao et al., 

2019a; Parajuli et al., 

2018; Park et al., 2018; 

Roodposhti et al., 2019; 

Nilda Sánchez et al., 

2018; Seonyoung Parka 

et al., 2016; Serrano et 

al., 2018; Q. Zhao et al., 

2018; Zhao et al., 2017  

To monitor the 

impact of 

drought on soil 

moisture; the 

Impact of 

climate and 

land-use 

changes; Water 

availability to 

quantify the 

agricultural 

domain 

SWAT; 

NDVI; 

TCI; 

SPI; 

VCI; 

VHI; ET 

MODI; 

Landsat-8 OLI; 

NOAA-AVHRR; 

TRMM 

A surface energy balance 

algorithm for land 

(SEBAL), which utilized 

Moderate Resolution 

Imaging 

Spectro-radiometer 

(MODIS) to generate 

monthly ET time series 

data, images were 

estimated by the SWAT 

model; The prediction 

drought model map 

shows a similar spatial 

distribution to the actual 

drought map; Apply 

hydrological factors 

(Precipitation, surface 

temperature 

evapotranspiration) & 

applied remote sensing 

data from various 

detectors 

Because of low 

spatial resolution, 

it is difficult to 

analyze the small 

vegetation area; 

Highly depends 

on the soil types, 

ground moisture 

and level of 

fertilization and 

also weakly 

performs on a 

dominant 

temperature over 

the precipitation 

Chimel, Asia; 

China; N/S 

Carolina, New 

Mexico; South 

Korea; 

Vietnam; 

California; Iran; 

India; 

Argentina; 

Iberian 

Peninsula; 

Indonesia; 

North West 

Mississippi 

Brazil; Northern 

India; Ethiopia; 

East Asia; 

Sudan 
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Table 2  Some common selected used in-situ-based drought indices conducted in research publication. 

Citation Subject area Indices/ 

Models 

Strength Restriction Region 

Havrylenko et al., 

2016; Fiaz et al., 2019; 

Sonam et al., 2019; 

Emeka, 2019; Tássia et 

al., 2019; David et al., 

2019; Fiaz Hussain et 

al., 2019; Sabin 

Shrestha et al., 2019; 

Lei et al., 2017; Ismail, 

et al., 2017 

 

To monitor the 

impact of drought on 

soil moisture; 

Evaluate soil erosion 

using semi 

distribution scale; 

Effective drought 

prediction using 

SWAT couple with 

the multivariate 

copulas  

 

SWAT, 

SPI, NDVI, 

SWC; SPI, 

PDSI SSI, 

SPEI; 

GCM,  

PDSI_SW

AT 

PCA 

 

The reliability of this 

model was constructed 

with the   temporal 

variation of SPI and 

NDVI to characteristics 

of drought episode; 

Flows simulation by 

SWAT in response to the 

majority of climate 

model projection show a 

consistent increase in low 

flow pattern 

Not suitable for the 

large-scale region, 

especially with great 

elevation variation; 

Changes in 

hydrological 

component 

concerning changes 

in LULC 

underground rapid 

commercialization 

Argentina; 

Pakistan 

India; Nigeria; 

Southern Brazil 

Iberian 

Peninsula; Miami 

the USA 

China; Turkey, 

Western Europe 

 

index (CMI), in cooperating soil moisture, 

precipitation and Temperature [36]; (iii) Crop Water 

Stress Index (CSDI) applied on actual and potential 

[37]; (iv) Crop Specific Drought Index(CSDI) 

Incorporate soil moisture, precipitation and 

temperature (ISMPTI); Crop Water Stress Index 

(CWSI); Standardized precipitation Evapotranspiration 

Index (SPEI) [38]; (v) Standardized Precipitation Index 

(SPI) uses precipitation regimes. In addition, some of 

these indices would be used for meteorological drought, 

in fact, based on the world meteorological organization 

(WMO) recommended for SPI should be applied for 

the drought classes mention above [39], with the value 

ranges of drought classes (Near, normal, Moderate, 

Severe and Extreme drought) for a stipulated period as 

(1, 3, 6, 9, 12- and 24-month interval) as shown in 

Table 3. 

Table 3  Most commonly used Climate drought monitoring indices. 

Citation Index Description Strengths Weaknesses 

Palmer, 1965; Haddinghaus and 

Sabol, 1991; Ashok et al., 2010; 

Dai et al., 2011; Sheriza et al., 

2015; Majid et al., 2017; Mashe 

Rao et al., 2017; Lei Zou et al., 

2017; Ismail Dabanli et al., 2017; 

Qi Zhao et al., 2018; Seou et al., 

2018 

Palmer 

Drought 

Severity Index 

(PDSI) 

Calculated using 

precipitation, temperature, 

and soil moisture data. The 

soil moisture algorithm has 

been calibrated for 

relatively homogeneous 

regions 

Worked out for flexible 

multiple time scales, 

provides early warning 

of drought and helps 

assess drought 

severity. 

Is very weak for 

short-term 

detection, and also 

depends on soil 

moisture and its 

property which 

have been 

simplified to one 

value in each 

climate division. 

Mckee et al., 1993; Sonmez et 

al., 2005; Zhang et al., 2009; 

Ashok et al., 2010; Zambrano et 

al., 2012; Sheriza et al., 2015; 

Zarch M. A. A. et al., 2015; Cui 

et al., 2015; Anderson et al., 

2016; Schroeder et al., 2016; 

Majid et al., 2017; Ravinesh et 

al., 2017; Seon-yeoh Park et al., 

2018; Nilda Sanchez et al., 2018 

Standardized 

Precipitation 

Index (SPI) 

A simple calculation based 

on the concept that 

precipitation deficits over 

varying periods scale 

influence groundwater, 

reservoir storage, ground 

moisture, snowpack, and 

stream flow 

Worked out for 

flexible multiple time 

scales, provides early 

warning of drought 

and helps assess 

drought severity. 

Precipitation is the 

only input data. SPI 

values based on 

long-term 

precipitation may 

change. The long 

time scale up to 24 

months is not 

dependable. 

Palmer, 1965; Quesney et al., 

2000; KeyanTash & Drcup, 2002; 

Ashok et al., 2010; Sheriza et al., 

2015; Majid et al., 2017 

Crop Moisture 

Index (CMI) 

A derivative of PDSI. CMI 

reflects moisture supply in 

the short term 

Effective for the 

detection of short-term 

agricultural drought 

sooner than PDSI. 

CMI cannot 

monitor long-term 

droughts well. 

Shefer & Dezman, 1982; Ashok 

et al., 2010; Son et al., 2012; 

Sheriza et al., 2015; Majd et al., 

2017; Suk Hwan Jang et al., 2019 

Surface Water 

Supply Index 

(SWSI) 

Developed from the Palmer 

index by combining 

hydrological and climatic 

features. 

SWSI takes into 

account reservoir 

storage, streamflow, 

snowpack, and hurry. 

Effective under 

SWSI is difficult to 

compare between 

different basins. 

SWSI cannot detect 

extreme events 
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snowpack conditions. effectively. Not a 

suitable indicator 

for agricultural 

drought. 

Sheriza et al., 2015; Ainundin & 

Ampun, 2008; M. Taufik et al. 

2019; B. Baniya et al., 2019 

Keetch 

-Byram 

Drought Index 

(KBDI) 

 Is used as the national 

forest fire danger point 

forecasting tool, 

precipitation and soil 

moisture used in water 

balance? 

 

Meyer & Hullinger et al., 1993; 

Ashok et al., 2010 

Crop 

Specification 

Drought Index 

(CSDI) 

Temperature, precipitation, 

evapotranspiration 

Provide daily Estimate 

of Soil water 

availability for 

different zones and 

ground layer 

Too many 

requirements 

including soil 

types, crop 

phenology, and 

climatology data 

Bhame & Mooly, 1980; Ashok et 

al., 2010; Aremu et al., 2012; 

Sheriza et al., 2015 

Bhaimer, and 

Mooley 

Drought Index 

(BMDI) 

Similar to SPI based on 

precipitation and PET 

Very good standards 

of the current 

condition of drought, 

all the same, its take 

care of the short 

weather drought 

period. 

Uncertainties in 

input data for the 

calculation of PET. 

Tsakiris and Vangelis, 2005; 

Tsakiris et al., 2007 

Reclamation 

Drought Index 

(RDI) 

  RDI at different 

basins cannot be 

compared with 

each other and has 

been computed 

seasonally. 

Shafer & Desman, 1982; 

Hollinger et al., 1993; Ashok et 

al., 2010; Martinex-Fernandez et 

al., 2016; S. B. Havry Lenka, J. 

M. Bado gue et al., 2016; Aadhar 

and Mishra, 2017; Lei Zou, Jun 

Xia et al., 2017; Sanchez et al., 

2018; Villamizar, Sergio M. et 

al., 2019; Jatin et al., 2019 

Soil moisture 

drought index 

(SMDI) 

Soil moisture, 

evapotranspiration 

 

Weekly soil moisture 

and evapotranspiration 

values simulated by 

SWAT to address 

PDSI weakness 

In several of the 

soil properties 

across different 

climate conditions. 

Svoboda et al., 2002 U.S Drought 

Monitoring 

(USDM) 

Based on several key 

physical indicators, such as 

PDSI, SPI, PNP, soil 

moisture model percentiles, 

daily streamflow 

percentiles, remotely 

sensed satellite vegetation 

health index and many 

supplementary indicators 

Integrating remotely 

sensed satellite 

vegetation health index 

together with other 

drought indices (see 

text for details). 

USDM is weighted 

to precipitation and 

soil moisture in the 

short term. USDM 

inherits the 

weaknesses of the 

other indices it uses 

(see text for details) 

Palmer, 1965 PHDI PHDI is derived from PDSI 

to quantify the long-term 

impact of hydrological 

drought 

Same as PDSI, but 

more effective to 

determine when a 

drought ends. 

So, is it a gradual 

change PHDI may 

change more 

slowly than PDSI 

Gibbs and Maher, 1967; Smith et 

al., 1993; White and O’Meagher, 

1995 

Deciles Foundation of the 

precipitation group, the 

deciles have been 

distributed from 1 to 10 

showing the drier condition 

indicating the lowest value 

while the wetter condition 

indicating higher values 

than normal. 

It establishes a uniform 

drought classification 

as an effect of accurate 

statistical measurement 

of responses to 

precipitation. 

For better analysis, 

there is a need for a 

long-term 

climatology record 

of precipitation 
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2.2 Impact of Climate Change on Drought 

For the past two decades, the most challenging issue 

for drought monitoring has been short-term drought 

prediction, the long-term drought prediction is more 

reliable than the short-term due to sudden slow signal 

responses by the drought condition [40, 41]. Even 

though the long-term drought predictions have 

occurred as a result of insufficient or limited 

precipitation data, the short-term period is highly based 

on factors such as temperature, and evapotranspiration 

rather than precipitation. While long to short-term 

prediction is still very difficult to be addressed as a 

result of the complexity of sufficient trends to measure 

meaningful drought anomalies of the phenomenon. 

However, short-term drought prediction has always 

been affected by an atmospheric variation on an 

intra-seasonal time scale [42].  

Nevertheless, on that point are several factors that 

influence drought condition, namely; hydrological 

parameter (evapotranspiration, soil moisture, 

groundwater, and precipitation) is needed to offer a 

comprehensive depiction of drought condition to 

estimate the hydrological variable operationally from 

satellite sensors. Drought monitoring and prediction 

have been defined as a termination of the inability of 

the satellite sensors to observe and retrieve some 

valuable information which lacks [43]. Grounded on 

this fact, in the early 2000s new revolution 

satellite-based sensor was launched to trash these 

challenging with high temporal frequency (1 to 2 days 

revisit). The Moderate Resolution Imaging 

Spectroradiometer (MODIS), Advanced Microwave 

Scanning Radiometer-Earth Observing System (EOS) 

(AMSR-E) are used for water content assessment from 

the plant as well as thermal-based tools for 

evapotranspiration estimation, and the Quick 

Scatterometer (QuickSCAT) [44, 45]. Pair with this 

revolution in applied science, the environmental 

models and algorithms, and computing capabilities, 

have contributed to the speedy emergence of many new 

remote sensing tools like sentinel data to monitor 

several aspects of drought conditions [46, 47]. 

2.3 Classification of Droughts 

With the frequent occurrences of drought, the world 

will never be safe as a result of its impact and severity, 

the deficit in precipitations to the ecosystem and 

environment at large [29, 48]. However, based on the 

related review, droughts have been classified into four 

major types (Meteorological, agricultural, hydrological, 

and socio-economic drought) [49, 50] (i) The 

Meteorological drought; causes as a result of a 

precipitation shortage or deficiency for a certain period 

over a geographical location, it could be a week, 

months or year. (ii) Agricultural drought emanated as a 

result of a deficiency in the soil moisture far below the 

expected vegetation growth requirement at different 

stages resulting in growth stress and low yield 

production [29]. (iii) Hydrological drought; occurred 

as a result of the shortage of natural, artificial or 

groundwater resources (Reservoir, Dam, Streams) [29]. 

(iv) Socioeconomic drought; effects of the 

above-named classes of drought cause havoc to human 

actions, and the ecosystem, therefore the effect of 

drought has social stability, food protection and 

economic loss of a country [3, 51]. Shot-term 

precipitation deficiency, soil moisture level and 

increase in evapotranspiration lead to rises in 

temperature [52, 53]. 

3. Remote Sensing Methods for Drought 

Monitoring 

The overall spatial context of drought based in-situ is 

highly challenging, in the last two-decade, remote 

sensing-based drought indices are seen as one of the 

most comprehensive and significant tools used 

approach to speaking, integrating multi-criteria 

drought indices to support drought assessment [54]. 

Therefore, the unitary of the significant roles is the 

provision of spatial continuous spectral reflectance of 

pixel values across the areas ranging from several 

meters to kilometres, where the missing data from the 

in-situ will be overcome by the satellite imagery. The 
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remote sensing-based drought indices are completely 

depending on the unique spectral signature (Red, Near, 

Infrared, shortwave and thermal spectral band) of 

reflected/emitted signal of electromagnetic radiation 

from multiregional countries. In some cases, the entire 

ecosystem and soil composition have a gradual effect 

on the sensors through physical phenomenon, where 

thermal and spectral responses will assist as a drought 

occurrence indicator. It refers to as the most potential 

indicator for investigating various classes of the 

drought [55, 56]. The drought-related environment 

phenomenon (soil moisture, organic matter, chlorophyll, 

vegetation biomass and ground temperature) can be 

assessed through respective spectral responses from 

electromagnetic radiation from different environmental 

parameters that lead to valuable source drought 

monitoring. Therefore, remote sensing-derived based 

operational drought monitoring methods can only be 

categorized based on methods and applications such as: 

Optical remote sensing method, Thermal remote sensing 

methods, Microwave remote sensing methods, and 

Combined remote sensing methods. All these depend on 

diverse factors such as availability of satellite 

information, quality and data Cost, and pre-processing 

and post-processing requirements. Lately, the remote 

sensing satellite provides advanced data for drought 

monitoring and prediction; (Vegetation indices, 

precipitation information, evapotranspiration, and soil 

moisture measurement) [57] for synoptic view with 

continuous data [58]. 

4. The Optical Remote Sensing Approach 

The main environmental phenomenon such as 

natural flora (vegetation greenness and vegetation 

wetness conditions) and soil moisture are found in an 

electromagnetic range from 0.4 to 2.5 spectral bands 

being the primary input for meteorological, agricultural 

hydrological drought indices [59]. These spectral 

bands comprise (red, near-infrared [NIR], and short 

infrared [SWIR]) The red spectrum tends to occupy 

most of the incident rays as determining factors for 

healthy vegetation and reflects a significant sum of 

money in the NIR spectrum in contrast meaning 

unhealthy vegetation reflect more visible spectrum and 

reflect less in the NIR spectrum [60]. The SWIR is 

more sensitive to vegetation wetness (Vegetation, 

water content) [61] while the NIR shows signs of 

diminishing response to the vegetation wetness, thus 

the SWIR, the surface reflectance is progressively 

increasing as a result of water content deficiency level, 

[62]. The significant role of optical remote 

sensing-based drought indices have described based on 

the applications and demand of monitoring depends on 

soil moisture monitoring, responses on the bare soil 

rather than vegetation surfaces since multiple reactions 

from vegetation on leaves and roots could resist 

drought [63], this will eventually delay the drought 

identification in densely vegetated areas, and lead to 

uncertainty on the index (PDI) result [64]. The 

vegetation drought index was used to move positively 

in a thickly vegetated area than sparsely vegetation 

areas based on bare soil reflectance that lead to 

uncertainty in drought monitoring, such indices are; 

(NDVI; LWCI; NDWI; NDVI anomaly, VCI; SVI, 

SWIR; SPSI, and VWSI). Thus, vegetation drought 

indices nor the soil, drought indices, were applied to 

semi-arid areas (sparsely vegetated areas) [65], which 

would lead to uncertainty and inaccurate the effect of 

the drought monitoring result. Thusly, this required a 

better approach by performing land cover classification 

and assigning suitable index for each class [66] or in 

the other hand, the challenges will lead to addressing 

the newly developed approach for drought indices that 

match both the vegetation and bare soil at the same 

time such as; (SIWI; NMDI; VSDI) Table 4. 

Microwave remote sensing described both, passive or 

active sensors base index to detect and estimate Soil 

moisture and vegetation and serves as the most 

significant drought index for monitoring across the 

world, where the microwave sensors remain the only 

tool used to detect dielectric constants between water, 

soil and vegetation [67], however, the passive 

microwave remote sensors (Scanning Multichannel 

Microwave Radiometer (SMMR); Special Sensor 
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Microwave/Imager (SSM/I); Soil Moisture and Ocean 

Salinity (SMOS); and Soil Active and Passive 

Moisture) are extensively used for surface water 

contend detection through the measurement of 

microwave intensity from the soil and vegetation 

which directly related to water content [67, 68]. 

Nevertheless, when an optical remote sensing domain 

combines in one index, it indicates different sensitivity 

to drought conditions. For instance, (the Normalized 

Difference Drought Index [NDDI]; and Normalized 

Moisture Index (NMI) are computed as a function of 

NDWI and NDVI [69, 70]. However, some studies 

revealed that Optical and Thermal based indices have 

been combined; examples, (i) Microwave Integrated 

Drought Index (MIDI); Integrated the precipitation 

Condition Index (PCI), Soil Moisture Condition Index 

(SMCI), Temperature Condition Index (TCI), obtain 

from Precipitation based TRMM data and soil moisture 

and land surface temperature and data from Advanced 

Microwave Scanning Radiometer-EOS (AMSR); and 

used for monitoring short-term drought over the 

semi-arid region [23] (ii) Scaled Drought Condition 

Index (SDCI) employed TRMM-based precipitation 

data in Conjunction with MODIS-based Ts and NDVI 

data for agricultural drought monitoring over arid and 

semiarid and humid regions [71] (Table 5). 
 

Table 4  Most commonly used optical remote sensing-based drought monitoring indices. 

Citation Index Description Strengths Weaknesses Type 

Ghulam A., Li Z. 

L., Qin Q. et al., 

2008 

Precipitation Drought Index (PDI) Soil Moisture Effective in drought 

condition calculation 

Weak in providing 

better accuracy on 

variable land cover 

types like bare soil 

and densely 

vegetated area 

Soil 

drought 

index 

Tucker C. J., 

Choudhury B. J., 

1987; Majid et al., 

2017; Khalid M., 

Elhag et al., 2018; 

Kogan, 1990; 

Nilda Sanchez et 

al., 2018; Zhang et 

al., 2017; Toulios 

et al., 2012 

NDVI For better measures 

of vegetation health 

or greenness 

condition in the 

moderate vegetation 

zone 

On and natural 

vegetation index 

In the sparsely 

vegetated area, the 

land would have an 

effect on reflectance 

which might cause 

doubts about the 

estimated values for 

the drought 

monitoring. 

Vegetation 

drought 

Index 

Hunt E. R., Rock 

B. N., 1989; 

Zanko-Tejada et 

al., 2003; Geo B., 

1996; Hardisky K. 

V., Smart R. M., 

1983; Xiao et al., 

et al., 2004 

Moisture Stress Index (MSI),  

Simple Water Ratio Index 

(SRWI),  

Normalized Difference Water 

Index (NDWI), Normalized 

Difference Infrared Index (NDII), 

Shortwave infrared Water Stress 

index (SIWSI) 

Land Surface-water Index (LEWI) 

Vegetation condition Index (VCI) 

For the efficient 

monitoring of 

vegetation 

conditions 

concerning water 

contend for long 

periods. 

Botany variable, 

surface temperature, 

ground moisture, 

precipitation, develop 

impact Basically, are 

significantly on the 

sensibility of the dense 

vegetation condition 

rather than a bit of leaf 

grade. 

Only applicable for a 

thickly vegetated 

area rather than a 

sparsely vegetated 

area, the presence of 

soil or bare surface 

might lead to affect 

the last outcome. 

Vegetation 

drought 

Index 

Ghulam A., Li Z. 

L., Qin Q. et al., 

2008 

Modified perpendicular Drought 

Index (MPDI) 

Normalized Multiband Drought 

Index (NMDI) 

Visible and Shortwave Drought 

Index (VSDI) 

Is mostly marked by 

diverse topography, 

soil and ecosystem 

and builds a better 

estimation 

Vegetation, Soil and 

water fight 

More effective on soil 

types and ground 

moisture. 

Highly depends on 

the soil types, 

ground moisture and 

level off. 

Soil and 

Water 

drought 

Index 

Kogan F. N., 

1995; McVicar T. 

R., Jupp D. L., 

1998 

Temperature Condition Index 

(TCI), 

Normalized Difference 

Temperature Index (NTDI) 

Have better 

reflectance of 

Spatio-temporal 

variability of ground 

moisture 

Other variables like 

solar radiation, wind 

speed, and leaf area 

index are too utilized. 

Fertilization also 

weakly performs on 

a dominant 

temperature over the 

precipitation 

Soil 

Moisture 
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Table 5  Some common selected Optical and active satellite-based drought indices for monitoring indices analysis. 

Citations Index Sensors Description Strengths Weaknesses Type 

Seon-young 

Park, Eunkyo et 

al., 2018a, 

2018b; Seddon 

et al., 2016; Qi 

Zhao, Qianyun 

Chen et al., 

2018; Brema et 

al., 2019; 

Kogan, 1990 

NDVI, 

NDDI, 

NDWI, 

ET 

MODIS, 

TRMM 

Evapotranspiration is 

highly sensible and 

related to drought 

conditions as a result of 

reflected energy and 

water exchange within 

the vegetations, soil, and 

atmosphere which 

reposes to soil moisture 

characteristics. 

Effective in 

monitoring 

vegetation, and 

water content, and 

providing 

vegetation 

greenness 

conditions. 

Unable to provide 

higher accuracy 

over a variable land 

cover types, 

especially bare 

soils moisture and 

density vegetation 

field, also 

uncertainty 

increases 

considerable in the 

presence of soil 

and sparsely 

vegetation or bare 

surface. 

Soil 

Moisture, 

Vegetation 

Cover. 

Zhao T. B., 

2014; Qi Zhao 

et al., 2018; 

Jiang S. H. et 

al., 2017 

NDVI, 

LST, 

SDCI 

MODIS, 

TRMM 

These are satellite 

platforms with higher 

spatial resolution and 

precision of precipitation 

product, and currently, 

the most widely used 

precipitation product. 

TRMM data have 

comparatively high 

accuracy in the 

different climatic 

regions, and the 

most widely used 

data in numerous 

applications, it 

works under 

all-weather 

conditions. 

Low spatial 

resolution and 

unable to acquire 

images at high 

elevation 
 

Precipitation 

Kogan, 1990; 

Nilda Sanchez 

et al., 2018; 

Zhang et al., 

2017; Toulios 

et al., 2012; 

Majid, 

shadman, Rood 

post, 2017 

NDVI, 

ET 

LST, 

VHI 

AVHRR, 

MODDIS 

Botany variable, surface 

temperature, ground 

moisture, precipitation. 

Develop impact on 

and natural 

vegetation index 

Because of low 

spatial resolution, 

it is difficult to 

analyze the small 

vegetation area. 

Precipitation 

Khalid M., 

Elhag et al., 

2018; Sandholt 

et al., 2002; 

Enenkel et al., 

2016; Sanchez 

et al., 2008, 

2016 

MIDI 

(NDVI, 

LST) 

EOS 

(AMSR-E) 

The relationship 

between soil temperature 

(LST) and Vegetation 

responses (NDVI), Is 

used on a worldwide 

scale for drought 

assessment. 

Scalable over 

space and time, it 

integrates remote 

sensing data set on 

(LST, Soil surface 

Moisture SSM and 

vegetation index 

NDVI) 

Indirect application 

for the recovery of 

soil moisture 

status. 

Soil 

Moisture 

 

5. Recants Advance in Remote Sensing 

Remote sensing techniques are an advanced 

approach that holds the potential to relieve time and 

view wider areas at a temporal resolution (daily data 

required for large regions or regions) [72] to identify 

the drought impact with efficiency and reliability for a 

long period [73, 74]. Monitoring and mapping drought 

extend is an alternative to control the present and the 

future occurrences [75]. In the final two decades 

satellites, and sensors have shown to be the most 

significant tools that supply data for global drought 

monitoring and assessment [18].  

Therefore, recants advancement in remote sensing 

techniques for addressing not only drought index, but 

fused multiple satellites for enhancement and assisted 

in mitigating these limitations [76], this review tries to 

consent with a synthetic approach to monitor drought 

index using the recent progress in remote sensing 

sensors (low; NOAA AVHRR), (medium; Landsat TM, 

Landsat MSS, and ETM+), and (high; MODIS and 
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TRMM). Therefore, these sensors provide satellite 

pictures with better resolutions that come up to the 

current drought-related product issues which support 

different drought indices like Land Surface 

Temperature (LST), Normalized Difference Index 

(NDVI), and evapotranspiration (ET) [40]. The 

combined integrated indices have been developed such 

as the Vegetation Health Index VHI [77] and Soil 

Witness Deficits Index [78] were developed using LST 

and NDVI from Moderate Resolution Imaging 

Spectroradiometer (MODIS). The microwave 

integrated Drought Index (MIDI) [23] was developed 

using precipitation from Tropical Rainfall Measuring 

Mission TRMM [79, 80], soil moisture and LST from 

Advanced Microwave Scanning Radiometer for EO 

(AMSR-E) to address the meteorological drought. 

According to J. Rhee and J. Im (2017) [81], LST and 

NDVI were used from MODIS and precipitation from 

TRMM to study Agricultural drought through linear 

integration of the ware. In addition, some indices use 

both satellite data and Climate data for high accuracy 

monitoring; Vegetation Drought Response Index 

VegDRI [82]; Vegetation Outlook VegOut [83]; North 

American Drought Monitor NADM [18]; and U.S. 

Drought Monitor USDM [84]; also, Seonyoung Parka  

et al. (2016) [18] used seven types of satellite derive 

indices to monitor and investigate the impact of 

drought on meteorological and agricultural drought for 

12 years; LST, NDVI, Normalized Difference drought 

Index NDDI [85]; Normalized Multi-band Drought 

Index NMDI [67]; Normalized Difference Water Index 

NDWI [86]; and actual ET from MODDIS and 

precipitation from TRMM, LST. 

Based on this fact, in the early 2000s new 

satellite-based sensor (The Moderate Resolution 

Imagine Spectroradiometer (MODIS), Advanced 

Microwave Scanning Radiometer-Earth Observing 

System (EOS) (AMSR-E) was used for water content 

assessment from the plant as well as thermal-based 

tools for evapotranspiration estimation, and Quick 

Scatterometer (QuickSCAT) [46, 47, 87] was launched 

into orbit for addressing these challenges with high 

temporal frequency (1 to 2 days revisit) and over a 

board spectral extend to monitor various component of 

hydrological parameters to ease the drought effect 

globally. Currently, drought monitoring and 

assessment have been expended as a result of the 

ongoing development by the remote sensing 

community, example the development of solar-induced 

fluorescence (SIF) to address the presence of emitted 

radiation from chlorophyll pigment in the vegetations 

serves as an early stage indicator of stress (productivity 

reduction) for plant photosynthesis [88, 89]. Thus, 

remotely sense solar-induced fluorenones, as the 

potential and significant early drought indicator. 

6. Conclusion  

Over the past decade, the satellite remote sensing 

application for drought monitoring and early warning 

has changed with the development of new technology. 

These changes occur as a consequence of numerous 

various categories of Earth observations developed by 

several space-borne sensors that have been set up into 

orbit in the last two decades. Yet, with this 

development the satellite-derived (MODIS and TRMM) 

drought, provide global data (50N-50S) that is suited to 

any region with limited in-situ data. Evapotranspiration 

is highly sensible and related to drought conditions, 

therefore, reflected energy and water exchange within 

the vegetations, soil, and atmosphere reposes to soil 

moisture characteristics. The MODIS utilized to 

generate monthly ET time series data, and images and 

apply the SWAT model for evaluation [18, 81, 90]. 

Thus, drought monitoring and assessment have been 

expanded as a result of the ongoing development by the 

remote sensing community, example the development 

of solar-induced fluorescence (SIF) to address the 

presence of emitted radiation from chlorophyll pigment 

in the vegetations serves as an early-stage indicator of 

stress (productivity reduction) for plant photosynthesis 

[88, 89]. So, remotely sensing solar-induced 

fluorenones, serves equally the potential and meaning 
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for the early drought indicator. Therefore, the meaning 

of new developed remote sensing-derived based 

drought indices will come to reality if researchers and 

experts for drought monitoring can come out with a 

new glide path to integrate indices that will address 

both long-term and short-term drought effects 

concerning in-situ and satellite information to support 

the realization of the SDG goal 2 and 13. 
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