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Abstract: Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly 
manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in 
the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed 
mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by 
slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of 
Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment. 
Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of 
control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present 
Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing. 
Core codes are revealed, application examples of printing with user-defined toolpaths are shown. 
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1. Introduction  

1.1 Project Goal 

3D printing, as the most common usage of additive 

manufacturing technology, also known as Fused 

Deposition Modelling (FDM), has been widely 

applied to design and architectural manufacturing field, 

which leads a revolution of producing geometries. 

Often as an end application of techniques, 

architectural design regards 3D printing as a method 

to produce entities from digital models. 

However, as the geometries become more and more 

complex, designers are no longer satisfied with the 

conventional printing technique, which prints the 
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object from bottom to top, layer by layer, actually a 

2.5D printing. A more flexible control method of 3D 

printers is required for making non-conventional 3D 

printings, which makes full use of 3 degrees of 

freedom (X, Y, and Z) of the printer. 

Especially in recent researches, this trend of 

non-conventional 3D printing becomes clearer. Wang 

Sheng et al. (2018) [1-5] applied a robotic arm with a 

printing extruder to print concrete with customized 

toolpaths. Seibold Hinz et al. (2018) [6-8] also refined 

a robotic arm to print ceramic. Mostafavi Kemper et al. 

(2018) [9] used similar robotic technique to print soft 

silicone on curved surfaces. Zheng and Schleicher 

(2018) [10] drew inspiration from the spinning 

behaviours of insects to program a 3D printer to print 

along given curves (Fig. 1). Yi-Chia and June-Hao 

(2018) [11] focused on printing wire structures 

directly from the extruder, without breaking the 

continuity. Molloy and Miller (2018) [12] constructed 
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a robotic system to print continuous filaments and 

lattice structures. 

So in order to spread the idea of the 

non-conventional 3D printing technique and achieve it 

in cheap desktop level 3D printers rather than 

expensive industrial robotic arms, we present 

Caterpillar, a Grasshopper plug-in helping designers 

transform geometries into Gcode, which runs the 3D 

printer according to customized toolpaths, with all 3 

degrees of freedom. 

1.2 Work Flow 

Fig. 2 shows the work flow of Caterpillar in 

Grasshopper. First, users should adjust the default 

settings to match the parameters of the printer they are 

going to use. Second, users can either input the 

printing and slicing geometries then use the slicer to 

produce the toolpaths, or directly input the 

user-defined toolpaths as curves. Last, the generator 

will output the Gcode text in a panel. By saving the 

text as a Gcode file and load it to the printer, the 

customized printing will start working. Optionally, 

when a Gcode text is inputted into the decoder 

component, the toolpaths will be read and generated 

as geometries. Users can apply this optional function 

to rebuild the toolpaths from any Gcode files in 

modelling software. 

 

 
Fig. 1  Bio-inspired 3D printings by Zheng and Schleicher (2018) [10]. 

 
Fig. 2  Work flow of Caterpillar in Grasshopper. 

 

2. Settings 

To make use of Caterpillar correctly, the first step is 

to tell it the settings of the printer and the printing 

object. 

2.1 Printer Settings 

For the printer settings, there are totally 14 
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parameters. Printer bed size (MM) contains three 

numbers (x, y, z), indicating the maximum printing 

size of the printer. Heated bed temperature (°C), 

extruder temperature (°C), and filament diameter 

(MM) are based on the printing material, which 

normally will not be changed once settled. Layer 

height (MM) and subdivision distance (MM) control 

the precision of the printing, while printing speed (%), 

moving speed (%), retraction speed (%), and 

retraction distance (MM) control how fast the printer 

will act when printing, moving without printing, and 

retracting materials. Extruder width (%) and extruder 

multiplier (%) together decide the width of the printed 

toolpaths. 

For conventional printing, the default settings are 

recommended. But changing some parameters may 

cause special effects, such as enlarging the extruder 

multiplier and lessening the printing speed to print 

very thick paths, or enlarging the extruder temperature 

to melt a base material along toolpaths. There is no 

limitation for the settings, so users can simply regard 

the printer as a moving machine with an extruder of 

any degrees of temperature. 

2.2 Infill Settings 

Another setting is for the infill, only needed when 

the users want to slice the model and apply infill 

inside. Infill degree defines the rotating degree of the 

web-like infill, while infill density represents the 

distance between each grid. More types of infill 

patterns are being developed, but users can also model 

the customized infill with the printing object, to 

achieve more flexibility. 

3. Slicer and Toolpath 

Next, geometric manipulations will be executed to 

the printing objects to generate the toolpaths. As Fig. 

3 shows, there are three options for the users, planar 

slicer like most of the slicing software, curved slicer 

for printing on existing objects or curved toolpaths for 

special usages, and user-defined toolpath inputted 

from Rhino or Grasshopper curves. 
 

 
Fig. 3  Planar Slicer (left), Curved Slicer (middle), User-defined Toolpath (right). 

 

3.1 Planar Slicer 

For planar slicer, since the printing objects are 

always closed meshes, Grasshopper command 

‘Contour’ here acts as the main role to generate the 

printing boundaries. Then infill settings will be 

applied, mapping infill pattern into the boundaries. 

Then all curves will be sorted to make sure the end 

point of the current printing path is close to the start 

point of the next printing path, avoiding time waste 

when moving the extruder. 

3.2 Curved Slicer 

Different from other slicing software, Caterpillar 

provides users with an option to slice the printing 

objects with a curved plan. This function was 

originally designed to help generate toolpaths when 

users want to print on an existing object but don’t 

know how to draw or generate toolpaths directly. 

Other than the slicing process, the infill producing and 

curves sorting processes are the same as the planar 
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slicer. Users can transform a real-world object into a 

3D model by 3D scanning or modelling it directly, 

generate the toolpaths, and then put the object in the 

right position on the printing bed. The printer will 

firstly move beyond the top of the object, and then 

start printing on it. 

3.3 User-Defined Toolpath 

For advanced usages, it’s recommended to directly 

input the toolpaths as user-defined curves, telling the 

printer to move and extrude exactly along the defined 

paths. And the program will not sort the curves, but 

only move the extruder from curves to curves. The 

toolpaths can be any 3D curves, no need to be planar. 

This enables the full control of the printer. 

4. Gcode Generator 

Then, the toolpaths will be sent to the Gcode 

generator, the program will deconstruct the curves and 

generate Gcode text file based on the printer settings. 

4.1 Generator Work Flow 

Fig. 4 shows the work flow of the Gcode generator. 

First, since the Gcode only recognizes spatial points 

with the coordinate of (x, y, z), the inputted curves 

will be divided into points based on the setting of 

subdivision distance, which approximately represent 

the curves. 

Then, the toolpaths will be created based on the 

points. But different from other Gcode, here since it’s 

acceptable if the users input 3D spatial curves, the 

printer should move up its extruder after finishing 

printing the current curve, then move to the position 

above the start point of the next curve, to avoid the 

collision with printed objects (Fig. 5). The height that 

the extruder should be lifted can be figured out before 

printing by referring the current top point in the 

printed objects. 

 
Fig. 4  Work flow of gcode generator. 

 

 
Fig. 5  Toolpath to avoid collision. 

 

Next, the extrusion amount, which is represented as 

a variable “E”, is calculated based on the printer 

settings of layer height, filament diameter, extrusion 

width, and extrusion multiplier. To be specific, for a 

given printing toolpath, which is a single line from the 

current position point to the next position point, its “E” 

value is proportional to the settings of layer height, 

extrusion width, and extrusion multiplier, while that is 
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inversely proportional to the settings of filament 

diameter. So the formula can be expressed as 

following: 

E = Height(layer)*Width(extrusion)*Length(curve) 

*Multiplier(extrusion)/sqr(Diameter(filament)/2)/Pi 

What’s more, to avoid the over extruding of extra 

filament, in the moment of finishing printing current 

curve, the extruding motor should spin back a little to 

suck back the filament, then after reaching the start 

point of the next curve, the motor should release the 

filament again to compensate this distance. This 

command should also be added into the printing 

toolpaths. 

Finally, the data of (x, y, z) and “E” with the 

variable “F” in the printer settings, which represents 

the moving speed of the toolpaths, are formatted into 

text Gcode file (Fig. 6). Together with the starting and 

ending codes, a completed Gcode is generated and 

ready to be inputted into the printers. 

4.2 Optimization 

Mentioned before, the curves will be divided into 

points, and each line of the Gcode text represents a 

point that the extruder should reach. However, 

different from curved toolpath, there is no need to 

divide a linear toolpath into points (Fig. 7). 

Experiments showed that, the file size will be greatly 

enlarged and exceed the file size limit for most of the 

printers, if dividing linear toolpaths, which widely 

appear in traditional planar printing. So before 

inputting the given curves to the dividing component, 

the program will detect and separate curved toolpaths 

and linear toolpaths, then divide the curved toolpaths 

as usual and extract the start and end points to 

represent the linear toolpaths. 
 

 
Fig. 6  Gcode example. 

 

Fig. 7  Different division rules for curved toolpaths and linear toolpaths. 

 

5. Gcode Decoder 

In addition to the Gcode generator, our team also 

developed a Gcode decoder to translate Gcode text file 

back to the toolpaths as Rhino or Grasshopper 

geometries, helping designers preview, rebuild, and 

modify the printing model in modelling software. 

5.1 Keywords Extraction 

Although there are about 100 commands in Gcode 

format, most of them are designed to control other 

hardware, such as the fan speed or the extruder 

temperature, or the irrelevant parameters of the motors, 

such as the running speed or the working plane (Fig. 

8). The only two commonly used commands to 

control the position of the extruder (movement of the 

motors) are “G1” (or “G01”) and “G92”. “G1” 

controls the position of the extruder by a following 

text, such as “G1 X1 Y2 Z3 E4 F5”, which tells the 

extruder to move to the spatial point of (1, 2, 3) with a 

speed of 5 unit, while extruding 4 mm filament. “G92” 

can set the current position as a new original state, 

mostly used by a following text of “G92 E0” to set the 

position of the extrusion motor to 0, preventing the 

over increasing of the variable “E”. 
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Fig. 8  Commonly-Used Gcode. 

 

So the rule to read and translate Gcode text is quite 

simple. Every time, when a line with a beginning code 

of “G01” or “G1” appears, the program will read the 

numbers after the characters of “X”, “Y”, “Z”, and 

“E”, then the numbers are the coordinate of one of the 

points in the toolpaths. Also, when “G92” appears, the 

following numbers should be recorded as the 

reference point, which acts to transform the current 

coordinate to the world coordinate. 

5.2 Model Rebuilding 

After extracting all points from the Gcode text file, 

the program will check the recorded “E” value to 

separate the toolpaths for printing and the toolpaths 

for moving. To be specific, if the “E” value of the 

current point is the same or less than that of the 

previous point, the curve from the previous point to 

the current point is a moving path, which should not 

be rebuilt as the printing model. On the contrary, if the 

“E” value keeps increasing, the points should be 

included in the printing paths. 

Then, a printing simulator was developed, which 

takes in the printing paths, and outputs a dynamic 

model showing how the 3D printer will work to print 

the Gcode file (Fig. 9). By adjusting a slider, the users 

can check the printed geometries and the position of 

the extruder in different printing percentage. 

Also, the users can bake the printing paths to Rhino 

as geometries for analysis or model rebuilding. This 

component not only enables the preview of printing 

objects in Rhino, but also provides a convenient 

method to adjust the Gcode by remodel the objects 

directly. 

6. Customized Printing Examples 
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Last, several examples are shown to discuss the 

advanced usages. 

The best way to make full use of the plug-in is to 

input user-defined toolpaths directly from users’ 

design. Fig. 10 shows the design “Pimples”, in which 

small circular disturbances will be applied to the 

printing paths in different positions, so that there will 

be buckles in the surface of the printing. 

With the same technique, but larger layer height 

and extrusion multiplier, the printer will keep 

extruding thick filament and produce a cup-like art 

work as Fig. 11 shows. 

Also, users can reform the printer with extra 

toolkits or replace parts of the components. Fig. 12 

shows a printer with a replaced sleeve motor, which 

supports a printing while rotating the printing platform. 

The Gcode can be generated based on the scaled 

toolpaths. 

By replacing the extruder with other tools such as a 

brush, the printer can become a writer to produce 

calligraphy, with customized toolpaths and Gcode 

generated by Caterpillar (Fig. 13). 

 

 
Fig. 9  Printing simulation. 

 

 
Fig. 10  Pimples. 
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Fig. 11  Hair. 

 
Fig. 12  Roof. 

 

 
Fig. 13  Calligraphy. 

 

7. Conclusion 

Caterpillar is a powerful plug-in for Grasshopper, 

which helps generate 3D printing Gcode from 

geometries, visualize toolpaths, and remodel printing 

objects from Gcode. It supports printing with the 

movement of all 3 axes, releasing all 3 degrees of 

freedom of the 3D printer. Customized printings can 

be achieved by modifying the hardware and 

generating Gcode by Caterpillar. 

In the future, non-conventional customized 3D 

printing will be highly developed for both educational 

and industrial purposes. Low-cost 3-axis 3D printers 

with extra toolkits can handle a variety of tasks, 

providing an alternative for expensive robotic 

fabrication. 
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