
Modern Environmental Science and Engineering (ISSN 2333-2581)
December 2019, Volume 5, No. 12, pp. 1143-1151
Doi: 10.15341/mese(2333-2581)/12.05.2019/008
Academic Star Publishing Company, 2019
www.academicstar.us

Caterpillar — A Gcode Translator in Grasshopper*

Hao Zheng1, Barrak Darweesh2, Heewon Lee3, and Li Yang4

1. Weitzman School of Design, University of Pennsylvania, Philadelphia, USA

2. Massachusetts Institute of Technology, Boston, USA

3. University of California, Berkeley, Berkeley, USA

4. University of Sydney, Sydney, Australia

Abstract: Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly
manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in
the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed
mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by
slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of
Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment.
Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of
control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present
Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing.
Core codes are revealed, application examples of printing with user-defined toolpaths are shown.

Key words: 3D printing, gcode, grasshopper, modelling, simulation

1. Introduction 

1.1 Project Goal

3D printing, as the most common usage of additive

manufacturing technology, also known as Fused

Deposition Modelling (FDM), has been widely

applied to design and architectural manufacturing field,

which leads a revolution of producing geometries.

Often as an end application of techniques,

architectural design regards 3D printing as a method

to produce entities from digital models.

However, as the geometries become more and more

complex, designers are no longer satisfied with the

conventional printing technique, which prints the

* This paper was originally published in CAADRIA 2019
conference.

Corresponding author: Hao Zheng, Ph.D. Candidate;
research areas/interests: machine learning, robotic technology,
mixed reality, generative de-sign. E-mail:
zhhao@design.upenn.edu.

object from bottom to top, layer by layer, actually a

2.5D printing. A more flexible control method of 3D

printers is required for making non-conventional 3D

printings, which makes full use of 3 degrees of

freedom (X, Y, and Z) of the printer.

Especially in recent researches, this trend of

non-conventional 3D printing becomes clearer. Wang

Sheng et al. (2018) [1-5] applied a robotic arm with a

printing extruder to print concrete with customized

toolpaths. Seibold Hinz et al. (2018) [6-8] also refined

a robotic arm to print ceramic. Mostafavi Kemper et al.

(2018) [9] used similar robotic technique to print soft

silicone on curved surfaces. Zheng and Schleicher

(2018) [10] drew inspiration from the spinning

behaviours of insects to program a 3D printer to print

along given curves (Fig. 1). Yi-Chia and June-Hao

(2018) [11] focused on printing wire structures

directly from the extruder, without breaking the

continuity. Molloy and Miller (2018) [12] constructed

Caterpillar — A Gcode Translator in Grasshopper

1144

a robotic system to print continuous filaments and

lattice structures.

So in order to spread the idea of the

non-conventional 3D printing technique and achieve it

in cheap desktop level 3D printers rather than

expensive industrial robotic arms, we present

Caterpillar, a Grasshopper plug-in helping designers

transform geometries into Gcode, which runs the 3D

printer according to customized toolpaths, with all 3

degrees of freedom.

1.2 Work Flow

Fig. 2 shows the work flow of Caterpillar in

Grasshopper. First, users should adjust the default

settings to match the parameters of the printer they are

going to use. Second, users can either input the

printing and slicing geometries then use the slicer to

produce the toolpaths, or directly input the

user-defined toolpaths as curves. Last, the generator

will output the Gcode text in a panel. By saving the

text as a Gcode file and load it to the printer, the

customized printing will start working. Optionally,

when a Gcode text is inputted into the decoder

component, the toolpaths will be read and generated

as geometries. Users can apply this optional function

to rebuild the toolpaths from any Gcode files in

modelling software.

Fig. 1 Bio-inspired 3D printings by Zheng and Schleicher (2018) [10].

Fig. 2 Work flow of Caterpillar in Grasshopper.

2. Settings

To make use of Caterpillar correctly, the first step is

to tell it the settings of the printer and the printing

object.

2.1 Printer Settings

For the printer settings, there are totally 14

Caterpillar — A Gcode Translator in Grasshopper

1145

parameters. Printer bed size (MM) contains three

numbers (x, y, z), indicating the maximum printing

size of the printer. Heated bed temperature (°C),

extruder temperature (°C), and filament diameter

(MM) are based on the printing material, which

normally will not be changed once settled. Layer

height (MM) and subdivision distance (MM) control

the precision of the printing, while printing speed (%),

moving speed (%), retraction speed (%), and

retraction distance (MM) control how fast the printer

will act when printing, moving without printing, and

retracting materials. Extruder width (%) and extruder

multiplier (%) together decide the width of the printed

toolpaths.

For conventional printing, the default settings are

recommended. But changing some parameters may

cause special effects, such as enlarging the extruder

multiplier and lessening the printing speed to print

very thick paths, or enlarging the extruder temperature

to melt a base material along toolpaths. There is no

limitation for the settings, so users can simply regard

the printer as a moving machine with an extruder of

any degrees of temperature.

2.2 Infill Settings

Another setting is for the infill, only needed when

the users want to slice the model and apply infill

inside. Infill degree defines the rotating degree of the

web-like infill, while infill density represents the

distance between each grid. More types of infill

patterns are being developed, but users can also model

the customized infill with the printing object, to

achieve more flexibility.

3. Slicer and Toolpath

Next, geometric manipulations will be executed to

the printing objects to generate the toolpaths. As Fig.

3 shows, there are three options for the users, planar

slicer like most of the slicing software, curved slicer

for printing on existing objects or curved toolpaths for

special usages, and user-defined toolpath inputted

from Rhino or Grasshopper curves.

Fig. 3 Planar Slicer (left), Curved Slicer (middle), User-defined Toolpath (right).

3.1 Planar Slicer

For planar slicer, since the printing objects are

always closed meshes, Grasshopper command

‘Contour’ here acts as the main role to generate the

printing boundaries. Then infill settings will be

applied, mapping infill pattern into the boundaries.

Then all curves will be sorted to make sure the end

point of the current printing path is close to the start

point of the next printing path, avoiding time waste

when moving the extruder.

3.2 Curved Slicer

Different from other slicing software, Caterpillar

provides users with an option to slice the printing

objects with a curved plan. This function was

originally designed to help generate toolpaths when

users want to print on an existing object but don’t

know how to draw or generate toolpaths directly.

Other than the slicing process, the infill producing and

curves sorting processes are the same as the planar

Caterpillar — A Gcode Translator in Grasshopper

1146

slicer. Users can transform a real-world object into a

3D model by 3D scanning or modelling it directly,

generate the toolpaths, and then put the object in the

right position on the printing bed. The printer will

firstly move beyond the top of the object, and then

start printing on it.

3.3 User-Defined Toolpath

For advanced usages, it’s recommended to directly

input the toolpaths as user-defined curves, telling the

printer to move and extrude exactly along the defined

paths. And the program will not sort the curves, but

only move the extruder from curves to curves. The

toolpaths can be any 3D curves, no need to be planar.

This enables the full control of the printer.

4. Gcode Generator

Then, the toolpaths will be sent to the Gcode

generator, the program will deconstruct the curves and

generate Gcode text file based on the printer settings.

4.1 Generator Work Flow

Fig. 4 shows the work flow of the Gcode generator.

First, since the Gcode only recognizes spatial points

with the coordinate of (x, y, z), the inputted curves

will be divided into points based on the setting of

subdivision distance, which approximately represent

the curves.

Then, the toolpaths will be created based on the

points. But different from other Gcode, here since it’s

acceptable if the users input 3D spatial curves, the

printer should move up its extruder after finishing

printing the current curve, then move to the position

above the start point of the next curve, to avoid the

collision with printed objects (Fig. 5). The height that

the extruder should be lifted can be figured out before

printing by referring the current top point in the

printed objects.

Fig. 4 Work flow of gcode generator.

Fig. 5 Toolpath to avoid collision.

Next, the extrusion amount, which is represented as

a variable “E”, is calculated based on the printer

settings of layer height, filament diameter, extrusion

width, and extrusion multiplier. To be specific, for a

given printing toolpath, which is a single line from the

current position point to the next position point, its “E”

value is proportional to the settings of layer height,

extrusion width, and extrusion multiplier, while that is

Caterpillar — A Gcode Translator in Grasshopper

1147

inversely proportional to the settings of filament

diameter. So the formula can be expressed as

following:

E = Height(layer)*Width(extrusion)*Length(curve)

*Multiplier(extrusion)/sqr(Diameter(filament)/2)/Pi

What’s more, to avoid the over extruding of extra

filament, in the moment of finishing printing current

curve, the extruding motor should spin back a little to

suck back the filament, then after reaching the start

point of the next curve, the motor should release the

filament again to compensate this distance. This

command should also be added into the printing

toolpaths.

Finally, the data of (x, y, z) and “E” with the

variable “F” in the printer settings, which represents

the moving speed of the toolpaths, are formatted into

text Gcode file (Fig. 6). Together with the starting and

ending codes, a completed Gcode is generated and

ready to be inputted into the printers.

4.2 Optimization

Mentioned before, the curves will be divided into

points, and each line of the Gcode text represents a

point that the extruder should reach. However,

different from curved toolpath, there is no need to

divide a linear toolpath into points (Fig. 7).

Experiments showed that, the file size will be greatly

enlarged and exceed the file size limit for most of the

printers, if dividing linear toolpaths, which widely

appear in traditional planar printing. So before

inputting the given curves to the dividing component,

the program will detect and separate curved toolpaths

and linear toolpaths, then divide the curved toolpaths

as usual and extract the start and end points to

represent the linear toolpaths.

Fig. 6 Gcode example.

Fig. 7 Different division rules for curved toolpaths and linear toolpaths.

5. Gcode Decoder

In addition to the Gcode generator, our team also

developed a Gcode decoder to translate Gcode text file

back to the toolpaths as Rhino or Grasshopper

geometries, helping designers preview, rebuild, and

modify the printing model in modelling software.

5.1 Keywords Extraction

Although there are about 100 commands in Gcode

format, most of them are designed to control other

hardware, such as the fan speed or the extruder

temperature, or the irrelevant parameters of the motors,

such as the running speed or the working plane (Fig.

8). The only two commonly used commands to

control the position of the extruder (movement of the

motors) are “G1” (or “G01”) and “G92”. “G1”

controls the position of the extruder by a following

text, such as “G1 X1 Y2 Z3 E4 F5”, which tells the

extruder to move to the spatial point of (1, 2, 3) with a

speed of 5 unit, while extruding 4 mm filament. “G92”

can set the current position as a new original state,

mostly used by a following text of “G92 E0” to set the

position of the extrusion motor to 0, preventing the

over increasing of the variable “E”.

Caterpillar — A Gcode Translator in Grasshopper

1148

Fig. 8 Commonly-Used Gcode.

So the rule to read and translate Gcode text is quite

simple. Every time, when a line with a beginning code

of “G01” or “G1” appears, the program will read the

numbers after the characters of “X”, “Y”, “Z”, and

“E”, then the numbers are the coordinate of one of the

points in the toolpaths. Also, when “G92” appears, the

following numbers should be recorded as the

reference point, which acts to transform the current

coordinate to the world coordinate.

5.2 Model Rebuilding

After extracting all points from the Gcode text file,

the program will check the recorded “E” value to

separate the toolpaths for printing and the toolpaths

for moving. To be specific, if the “E” value of the

current point is the same or less than that of the

previous point, the curve from the previous point to

the current point is a moving path, which should not

be rebuilt as the printing model. On the contrary, if the

“E” value keeps increasing, the points should be

included in the printing paths.

Then, a printing simulator was developed, which

takes in the printing paths, and outputs a dynamic

model showing how the 3D printer will work to print

the Gcode file (Fig. 9). By adjusting a slider, the users

can check the printed geometries and the position of

the extruder in different printing percentage.

Also, the users can bake the printing paths to Rhino

as geometries for analysis or model rebuilding. This

component not only enables the preview of printing

objects in Rhino, but also provides a convenient

method to adjust the Gcode by remodel the objects

directly.

6. Customized Printing Examples

Caterpillar — A Gcode Translator in Grasshopper

1149

Last, several examples are shown to discuss the

advanced usages.

The best way to make full use of the plug-in is to

input user-defined toolpaths directly from users’

design. Fig. 10 shows the design “Pimples”, in which

small circular disturbances will be applied to the

printing paths in different positions, so that there will

be buckles in the surface of the printing.

With the same technique, but larger layer height

and extrusion multiplier, the printer will keep

extruding thick filament and produce a cup-like art

work as Fig. 11 shows.

Also, users can reform the printer with extra

toolkits or replace parts of the components. Fig. 12

shows a printer with a replaced sleeve motor, which

supports a printing while rotating the printing platform.

The Gcode can be generated based on the scaled

toolpaths.

By replacing the extruder with other tools such as a

brush, the printer can become a writer to produce

calligraphy, with customized toolpaths and Gcode

generated by Caterpillar (Fig. 13).

Fig. 9 Printing simulation.

Fig. 10 Pimples.

Caterpillar — A Gcode Translator in Grasshopper

1150

Fig. 11 Hair.

Fig. 12 Roof.

Fig. 13 Calligraphy.

7. Conclusion

Caterpillar is a powerful plug-in for Grasshopper,

which helps generate 3D printing Gcode from

geometries, visualize toolpaths, and remodel printing

objects from Gcode. It supports printing with the

movement of all 3 axes, releasing all 3 degrees of

freedom of the 3D printer. Customized printings can

be achieved by modifying the hardware and

generating Gcode by Caterpillar.

In the future, non-conventional customized 3D

printing will be highly developed for both educational

and industrial purposes. Low-cost 3-axis 3D printers

with extra toolkits can handle a variety of tasks,

providing an alternative for expensive robotic

fabrication.

References

[1] S. Y. Wang et al., Transient materialization, in: Learning,
Prototyping and Adapting: Short Paper Proceedings of the
23rd International Conference on Computer-Aided
Architectural Design Research in Asia (CAADRIA) 2018.
Beijing, China, 2018.

[2] S. Sun et al., 3D printing concrete system design and
fabrication process research based on robotic Arm, in:
Learning, Prototyping and Adapting, Short Paper
Proceedings of the 23rd International Conference on
Computer-Aided Architectural Design Research in Asia
(CAADRIA) 2018, Beijing, China, 2018.

Caterpillar — A Gcode Translator in Grasshopper

1151

[3] H. C. Im et al., Responsive spatial print — Clay 3D
printing of spatial lattices using real-time model
recalibration, in: Proceedings of the 38th Annual
Conference of the Association for Computer Aided Design
in Architecture, Mexico City, Mexico, 2018.

[4] W. R. L. D. Silva et al., 3D concrete printing of
post-tensioned elements, in: Proceedings of the IASS
Symposium 2018, Boston, USA, 2018.

[5] C. A. Battaglia et al., Sub-additive 3D printing of
optimized double curved concrete lattice structures, in:
Robotic Fabrication in Architecture, Art and Design 2018,
Zurich, Switzerland, 2018.

[6] Z. Seibold et al., Ceramic morphologies — Precision and
control in paste-based additive manufacturing, in:
Proceedings of the 38th Annual Conference of the
Association for Computer Aided Design in Architecture,
Mexico City, Mexico, 2018.

[7] J. Carvalho et al., 3D printed ceramic vault shading
systems, in: Proceedings of the IASS Symposium 2018,
Boston, USA, 2018.

[8] S. Bhooshan et al., Function representation for robotic 3d
printed concrete, Robotic Fabrication in Architecture, Art
and Design 2018, Zurich, Switzerland, 2018.

[9] S. Mostafavi et al., Multimode robotic materialization,
Robotic Fabrication in Architecture, Art and Design 2018,
Zurich, Switzerland, 2018.

[10] H. Zheng and S. Schleicher, Bio-inspired 3D printing
experiments, in: Learning, Prototyping and Adapting,
Short Paper Proceedings of the 23rd International
Conference on Computer-Aided Architectural Design
Research in Asia (CAADRIA) 2018, Beijing, China, 2018.

[11] H. Yi-Chia and H. June-Hao, The composite material wire
printing of robotic fabrication and construction process, in:
Learning, Prototyping and Adapting, Short Paper
Proceedings of the 23rd International Conference on
Computer-Aided Architectural Design Research in Asia
(CAADRIA) 2018, Beijing, China, 2018.

[12] I. Molloy and T. Miller, Digital dexterity — Freeform 3D
printing through direct toolpath manipulation for crafted
artifacts, in: The International Conference on Association
for Computer Aided Design in Architecture (ACADIA),
Mexico City, Mexico, 2018.

