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Abstract: The lattice Boltzmann method (LBM and its schema D2Q9 and D2Q5) is applied for the numerical study of hydrodynamic 
and thermal instability during confinement of air or water in rectangular cavities with aspect ratios A = L/H varying in the range (0.5, 1, 
2, 3, 5), The lattice Boltzmann method (LBM) was used to discretize the steady-state and transient flow equations.  

The cavity is differentially heated on the horizontal walls. The study is carried out for a Prandtl number of Pr = 0.71 (air), and for Pr 
= 7.01 (water). The Rayleigh number values change between (6×103)-(130×103). We have discussed and analyzed the influence of 
Rayleigh number on the dynamic and thermal fields as well as on the average Nusselt number of the flow. In addition, critical 
frequencies dominating the oscillatory flow have been determined. 

The results show the frequency dependence with the aspect ratio and the critical Rayleigh number. Although our study is 
two-dimensional, it is expected that the results of a three-dimensional numerical simulation, focusing on the possible obstacles or 
structure in the flow, as well as the possible presence of the instabilities due to the double diffusion, confirm the qualitative results 
obtained in this work. 
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1. Introduction   

The presence of natural convection phenomena in 

many industrial systems has increased the interest of 

the scientific community in this branch of aerothermics. 

The state of knowledge shows an important need to 

understand the thermal environment of these systems 

in order to arrive at a correct prediction of the 

circulation of fluids and heat transfer inside 

increasingly complex geometries. 

In the shorter term, current studies tend to respond 

directly or indirectly to energy saving issues. The 

challenge becomes double when these natural 

convection phenomena take place near composite 

materials whose mechanical performance is strongly 

related to the thermal environment in which they are 

placed. This type of flow is encountered in the soft 

belly, the wing boxes or the air intake compartments of 

                                                           
Corresponding author: Kheireddine Zehouani, Ph.D. 

Student; research areas/interests: environmental science and 
engineering, and prosthesis geometry. E-mail: 
khaireddinezehouani093@gmail.com. 

the aircraft. Faced with this need, Airbus, Limsi and 

Onera met around the MAEVA II project and the thesis 

of Marie-Laure Toulouse [1] and Ludovic Perrin [2], 

part of this unifying project, was particularly interested 

studying the cooling of air conditioning packs placed in 

the soft belly. In this case, the natural convection flows 

are generated by the presence of a heating obstacle 

inside a cavity. This work has thus made it possible to 

characterize the dynamic and thermal behavior of the 

flows in various configurations and thus to provide a 

database serving as a reference for the validation of 

research or industrial calculation codes with the future 

goal of optimizing these ventilation circuits. avoiding 

the too expensive successive modifications tested in 

flight. 

Thus, through several numerical simulations using 

the lattice method of Lattice Boltzmann, we have 

studied the effect of confinement on the topology of the 

flow generated by heating the wall less than a constant 

temperature in a laminar regime, which represents the 

case of an industrial flow such as that encountered 

within a flat solar collector without obstacles, or in the 
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convective movement manifesting in the atmospheric 

layer of the terrestrial globe, as well as in the flows 

generated by the thermo-halin movement in the oceans. 

1.1 Rayleigh–Benard Convection 

When a thin layer of fluid is heated from below or 

cooled from above, the upward heat transfer can be 

achieved by conduction, that is, in the absence of 

motion on the part of the fluid because its viscosity 

cannot be overcome by the buoyancy forces. However, 

this can occur only in the rather extreme case of a very 

thin and very viscous fluid. Lord Rayleigh studied this 

problem and obtained a straightforward criterion. For a 

horizontal fluid layer of thickness H in contact with a 

lower temperature T along its top surface and with a 

higher temperature T + ∆T along its bottom (Fig. 1), 

the threshold separating the quiet from the convective 

regime is expressed in terms of the Rayleigh number: ܴ௔ ൌ 	݃α∆ܶܪଷݒκ ൌ 	Ģ௥௅. ௥ܲ				 
in which α is the thermal expansion coefficient, ν the 

kinematic viscosity, and κ is the thermal diffusivity. 

Values for water and air at ambient temperatures and 

pressures are shown in Table 1. 

No convective motion occurs at low values of the 

Rayleigh number, Ra < 1708, and the fluid transports 

heat exclusively by molecular heat diffusion. At 

Rayleigh numbers slightly exceeding the critical value 

of 1708, convection occurs in alternating patterns of 
 

 
Fig. 1  The convection problem studied by Lord Rayleigh 
and simulated in the laboratory by Henri Benard [4].    

 

Table 1  Values of physical properties of fresh water (at 
10°C) and air (at 15°C) at atmospheric pressure. 

Physical property Notation Water Air 

Thermal expansion 
coefficient 

a 2.6×10-4/°C 3.5×10-3/°C

Kinematic viscosity v 1.3×10-6 m2/s 1.5×10-5 m2/s

Thermal diffusivity k 1.4×10-7 m2/s 2.2×10-5 m2/s

upward and downward motion.  

1.2 Lattice Boltzmann Model 

The Lattice Boltzmann method [1-3] was originated 

from Ludwig Boltzmann’s kinetic theory of gases. The 

fundamental idea is that gases/fluids can be imagined 

as consisting of a large number of small particles 

moving with random motions. The exchange of 

momentum and energy is achieved through particle 

streaming and billiard-like particle collision. This 

process can be modelled by the Boltzmann transport 

equation, which is ߲݂߲ݐ ൅ ݂׏ሬԦݑ ൌ Ω 

where f(ݔԦ, t) is the particle distribution function, ݑሬԦ is 

the particle velocity, and Ω is the collision operator. 

The LBM simplifies Boltzmann’s original idea of gas 

dynamics by reducing the number of particles and 

confining them to the nodes of a lattice. For a two 

dimensional model, a particle is restricted to stream in a 

possible of 9 directions, including the one staying at 

rest. These velocities are referred to as the microscopic 

velocities and denoted by ݁పሬሬԦ	, where i = 0, . . . , 8. This 

model is commonly known as the D2Q9 model as it is 

two dimensional and involves 9 velocity vectors. Fig. 2 

shows a typical lattice node of D2Q9 model with 9 

velocities ݁పሬሬԦ	 defined by 
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Fig. 2  Illustration of a lattice node of the D2Q9 model [5]. 
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For each particle on the lattice, we associate a 

discrete probability distribution function ௜݂(ݔԦ, ݁పሬሬԦ, t) or 

simply ௜݂ Ԧݔ) , t), i = 0 . . . 8, which describes the 

probability of streaming in one particular direction [3] 

2. Results and Discussion 

(1) Instability of R-B, in single air cavities Pr = 0.71: 

Aspect ratio = 2   and   ܴܽ௖௥ = 72.99×103. 

The isotherms of Fig. 6 show that the thermal field 

spread uniformly distributed, where there is dissipation 

of heat, the temperature distribution is almost constant.  

By inspecting the lines of the contours of the 

magnitude of the velocity (Fig. 7) show a deviation of 

the velocity vectors around, the edges of the middle of 

a hot wall of heat, Near the adiabatic bottom wall the 

modules of the vectors are very weak, therefore a 

stagnation of the fluid. The fluid layers in this region 

receive heat from the convective circulation of the cells 

Vmax = 0.019. 

The spectral analysis of the temporal evolutions of 

the different signals by means of the Fast Fourier 

Transform (FFT) gives us the graph as shown in (Fig. 

7). The latter shows the predominant frequency of the 

flow, which in this case is equal to frcr = 0.0669 Hz. 
 

 
Fig. 3  The transition of the temperature near the hot wall 
towards the oscillatory regime. 
 

 
Fig. 4  The transition of the temperature near the hot wall 
towards the oscillatory regime.  
 

 
Fig. 5  the current lines having two symmetrical 
recirculation zones, one anti-clockwise (left part of the 
enclosure) and the other clockwise (right part). 
 

 
Fig. 6  Isothermal temperatures in the aspect ratio cavity 2. 
 

 
Fig. 7  Spectrum of the energy of the speed U. 

 

(2) Instability of R-B, in single water cavities  

Pr = 7.01: 

Aspect ratio = 2.   and   ܴܽ௖௥ = 24×103 

 

 
Fig. 8  Temporal evolution of the adimensional 
temperature within the cavity of RA = 2. in the case of 
water. 
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Fig. 9  Temporal evolution of the adimensional velocity u 
within the cavity of RA = 2. And Pr = 7.01 for the second 
sampling point. 

 

Figs. 10 and 11 show that the deformation of the 

isothermal lines is caused by the appearance of two 

recirculation zones that are almost similar 

(symmetrical) but in opposite directions, hence a 

recirculation mass flow rate and a convective transport 

important. 

Fig. 12 shows a deviation of the velocity vectors 

around, the edges and in the middle of the hot wall, 

close to the adiabatic bottom wall the modules of the 

vectors are very weak, thus a stagnation of the fluid. 

The fluid layers of this region receive heat from the 

convective circulation of cells where Vmax = 0.38. 

Fig. 13 shows a deviation of the velocity vectors 

around, the edges and in the middle of the hot wall, 

close to the adiabatic bottom wall the modules of the  
 

 
Fig. 10  Current lines for the R-B convection case 

considered Ѱ	0.137 = ࢞ࢇ࢓. 
 

Fig. 11  The isothermal lines for the convection case 
considered. 

 

Fig. 12  Iso-values of the adimensional speed for the case 
of RA = 2 And Pr = 7.01. 

 
Fig. 13  Spectrum of the energy of the speed U. 

 

vectors are very weak, thus a stagnation of the fluid. 

The fluid layers of this region receive heat from the 

convective circulation of cells where Vmax= 0.38. 

(3) Limits and stability diagram: 

Conclude our results with a final summary table 

(Table 2), showing the different critical Rayleigh 

number values obtained from our numerical simulations, 

using the Boltzmann Method (Boltzmann Method). The 

translation of these numerical values into graphs gives 

us a stability diagram for each of the two substances 

studied numerically, namely air and water (Fig. 14). 

The regions below the curve connecting the different 

points of the critical Rayleigh number are the region 

where the flow will remain stable, while the region 

above the curve considered represents the region of 

instabilities (or transition to turbulence). The values of 

different critical frequencies corresponding to the 

different critical Rayleigh numbers are shown on the 

stability diagram. 
 

Table 2  Critical values of the Rayleigh number for air and 
water. 

Aspect ratio 0.5 1 2 3 5 

Racr(air)×103 130 99 72.99 42.4 14.3

Racr(water)×103 109.69 30.6 24 17.5 6 
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Fig. 14  Racr stability diagram vs cavity aspect ratio. 

3. Conclusion 

Numerical study of the hydrodynamic and thermal 

instability during the confinement of air or water in 

rectangular cavities with aspect ratios A = L/H 

variables (0.5, 1, 2, 3, 5), was made. The lattice 

Boltzmann method (LBM) was used to discretize the 

steady-state and transient flow equations. 

Validation of the calculation code was done with 

experimental work found in the literature of stationary 

natural convection in a differentially heated chamber. 

A good agreement was obtained between our 

simulations and the experimental data. 

The evolution of flow and heat transfer during 

instability has been examined, the results of which 

show that the structure of the current function and the 

isotherms gradually deforms to a structure with 

oscillatory character (periodically) during instability. 

Using the Fast Fourier Transform (FFT), the 

predominant frequencies of the oscillations were 

determined in all simulated cases. 

The results show the frequency dependence with 

the aspect ratio and the critical Rayleigh number. 

Although our study is two-dimensional, it is expected 

that the results of a three-dimensional numerical 

simulation, with a concentration on the possible 

obstacles or structure in the flow, as well as the 

possible presence of the instabilities due to the double 

diffusion, confirm the qualitative results obtained in 

this work. 
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