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Abstract: This reports on integration of a new Chemistry Transport Model (CTM) sparse matrix algorithm (FSPARSE) as a 
replacement of the legacy JSPARSE algorithm in the U.S. EPA Community Multiscale Air Quality (CMAQ) model.  This has been 
implemented in both Rosenbrock and Gear methods for aqueous chemistry in a hybrid MPI and OpenMP implementation. Both 
methods are well suited for an OpenMP thread-parallel version. For a 24 hour scenario, execution performance results for both MPI and 
OpenMP thread parallel scaling are presented with the CMAQ5.3b release on a heterogeneous cluster of 10 nodes with a total of 128 
cores.  The FSPARSE version of CMAQ typically provides significant speedup over the standard EPA release with similar precision 
in predicted species concentration values. 
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1. Introduction  

This study reports on major performance 

enhancements for the Community Multi-scale Air 

Quality Model (CMAQ) that add new levels of 

parallelism and replaces the legacy algorithm for a 

sparse matrix linear equation solver. CMAQ is a major 

air quality model (AQM) developed by the U.S. EPA 

[1] and is supported through the Community Modeling 

and Analysis System (CMAS) [2], as a part of the 

University of North Carolina, Institute for the 

Environment, Chapel Hill, North Carolina, USA [3]. 

CMAQ has a world-wide user base with over 3000 

downloads as reported by CMAS. The release used in 

this analysis is 5.3b and is available for download at 

Github [4]. The remainder of this section reviews some 

preparatory background to set the context of this work.  

1.1 Air Quality Modeling: Use and Regulation 
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Laboratory, Computational Exposure  Division, U.S. EPA. 
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The role of air quality modeling is to study and 

predict the chemical interaction, atmospheric transport, 

and deposition of Criteria Pollutants (and other species) 

in out-door air on metropolitan, regional, and 

continental temporal scales. The AQM initiative in the 

USA dates from the 1970’s and is a response to the 

Clean Air Act [5]. Title 1 of the Clean Air Act (CAA) 

directs the U.S. EPA to establish National Ambient Air 

Quality Standards (NAAQS) for common pollutants 

posing health risks. Federal regulation requires States 

to demonstrate attainment of the NAAQS and together 

with the U.S. EPA, they enact regulations to control 

industrial and commercial pollutant emission sources, 

while only the U.S. EPA regulates mobile emissions 

sources. In 1990 the CAA was amended to add Air 

Toxics and Acid Rain provisions and so-called 

non-attainment areas were classified. 

The criteria pollutants identified in the CAA [5] 

include: 

 Ground level ozone (O3 - contributor to smog) 

 Particulate Matter (PM) in the 2.5 to 10 micron 

range (PM2.5 and PM10) that poses atmospheric 

haze and respiratory risk 
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 Lead (Pb) 

 Nitrogen dioxide (NO2) 

 Sulfur dioxide (SO2)  

 Carbon monoxide (CO). 

CMAQ is used on continental and regional scales in 

the USA to predict concentrations and transport of 

criteria pollutants and also as a real-time forecasting 

model. At the State level, its use is often driven by a 

State Implementation Plan (SIP), as developed by a 

given State. A SIP defines regulations and their scope 

within that State and also spells out consequences for 

NAAQS when implemented. A SIP may only be 

approved by the appropriate U.S. EPA Regional Office 

for that State and typically uses environmental models 

to demonstrate NAAQS attainment. The CMAQ model, 

when used in the AQM, is first validated by application 

to historical episodes and only then is it applied to 

future scenarios to demonstrate compliance with the 

NAAQS. Thus, with the aid of an AQM, an approved 

SIP must demonstrate either NAAQS attainment by the 

predetermined date, or NAAQS non-attainment. In the 

case of NAAQS attainment, a 10 year Maintenance 

Plan is imposed. Whereas in the case of non-attainment, 

a Federal Implementation Plan (FIP) is developed at 

the local U.S. EPA Regional Office and Federal 

sanctions may be applied on the State in question. 

Over the decades the science in the CMAQ model 

has increased in complexity and continues to do so. As 

a result, both the magnitude of the wall clock time and 

volume of output data has escalated over time with 

each new release. Therefore there is always a latent 

need to improve CMAQ efficiency in performing 

simulations on modern computer architectures. 

Advances in processor and memory architecture, as 

well as software paradigms, are regularly explored with 

a view to their utility for improved efficiency and 

scalable performance. 

1.2 Parallelism in the Computing Market Place 

The High Performance Computing (HPC) 

marketplace is now dominated by parallel architectures 

of several different types and requires a careful analysis 

of the hardware model before a port of legacy 

applications is attempted to any new architecture. 

Table 1 summarizes some traditional HPC hardware 

models and their acronyms, such as processing element 

(PE). From the end-user (or application) viewpoint this 

means choosing a parallel program paradigm amongst 

the dominant multi-platform ones currently available 

by categories such as those summarized in Table 2. 

Typical modern commodity architectures include 

clusters of computer nodes containing one or more 

central processing units (CPU), with each CPU 

populated by multiple cores, or PEs, each of which may 

operate independently in a SIMD environment (Table 

1). In recent years, nodes have acquired add-on 

co-processor devices that host their own local memory 

and are populated with many (hundred’s of) cores. The 

former will be referred to as multi-core and the latter as 

many-core devices. Both types of hardware 

environments delegate subtasks to thread processes 

that execute on individual cores. 
 

Table 1  High performance computing (HPC) hardware models. 

Mnemonic Functionality Features 

SIMD 

Single Instruction Stream 
Multiple Data Stream 

All PEs execute exactly the same instruction at the same 
time 

SMP = Shared Memory Parallel Memory is global to all PEs 

MIMD 

Multiple Instruction Stream Multiple Data Stream All PEs execute different instructions at the same time 

DMP = Distributed Memory Parallel Memory is local to each PE 

SMP = Shared Memory Parallel 
Part of memory is global to all PEs and part is local to each 
PE 
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Table 2  High performance computing (HPC) parallel program paradigms. 

Paradigm Model Features 
MPI 

(Message Passing Interface) 
Functional parallel (or task 
parallel) 

Distinct tasks perform operations simultaneously (on 
different data) 

OpenMP 
(compiler directives) 

Master-worker 
Master task spawns subtasks (workers) to other 
processes to distribute subtasks 

MIC® 
(Many Intergrated Core device) 

Massive parallelism Cohorts of thread teams 

 

1.3 Parallel Programming Styles in CMAQ 

The standard distribution of CMAQ [2,4] 

implements a MIMD/DMP hardware model (Table 1) 

and uses MPI (Table 2) to implement this by 

distributing partitions of the grid domain to different 

MPI processes. It also relies on instruction level 

parallelism [6] by invoking vector instructions (where 

they are not otherwise inhibited) for the innermost 

loops. However, the standard distribution of CMAQ 

does not implement a SIMD/SMP (Tables 1 and 2) 

hardware model. Therefore, one major performance 

enhancement reported here is the inclusion of a thread 

parallel program paradigm into the standard U.S. EPA 

release of CMAQ for one of the most time consuming 

modules of the CMAQ code. To achieve more efficient 

parallel performance, the legacy sparse matrix 

algorithm in the standard release of CMAQ is replaced 

with a modern version. 

The new version of CMAQ described here has three 

levels of parallelism: 

1) The outer MPI level is the one previously 

delivered in the standard U.S. EPA distribution. 

2) Each MPI process activates its own team of 

threads in a thread parallel layer. 

3) Instruction-level parallelism at the vector loop 

level is preserved for each thread.  

This new hybrid version of CMAQ is suitable for 

either multi-core commodity processors or for 

many-core general purpose add-on accelerators. The 

suitability of the latter was explored previously [12] for 

the case of the Intel Many Integrated Core® (MIC) 

architecture but is not discussed here for CMAQ. 

1.4 Algorithms in CMAQ 

A brief summary of the algorithm design in CMAQ 

is given here as a background to the descriptions of the 

new algorithmic changes that follow. A comprehensive 

survey of the science and algorithms developed and 

applied in CMAQ is to be found in a detailed report 

prepared by the U.S. EPA [8]. 

1.4.1 Science Processes in CMAQ 

A one-atmosphere model was developed and this 

describes the dynamics by a set of governing equations 

on a regular grid of cells populating a global array 

dimensioned by column, row, and level (or layer), for 

the terrestrial atmosphere. This atmospheric model 

uses a transport mechanism that consists primarily of 

numerical algorithms for advection, with vertical and 

horizontal diffusion, using meteorological input data 

from another model. In this dynamical model, multiple 

science modules describe various physical processes 

such as advection, diffusion, photolysis, aqueous 

chemistry and cloud dynamics, gas-phase chemistry, 

etc. An operator splitting methodology allows a 

fractional time step implementation of the science 

processes that are integrated over time. The numerical 

integration of the advection time step imposes input 

synchronization at a time step interval Δtsync. This time 

stepping method relies on the approximation that the 

computational grid remains constant for the duration of 

the interval of the synchronization time step. All 

chemical species concentrations are stored in a global 

array (indexed as described above) and this is 

accessible to all science processes that may affect them.  

Chemical transformations occur in gas, liquid, or solid 

phases and each is modeled separately. The gas phase 

is dominant and these transformations are described in 

the CMAQ Chemical Transport Model (CCTM). 

Operator splitting allows the gas-phase chemistry to be 
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decoupled from other physical processes. The CCTM 

module computes the gas phase chemistry in a 

numerical model of reaction kinetics for production 

and loss of chemical species. This is accomplished 

through solution of equations that arise from the 

mathematical representation of the gas phase chemistry 

where reaction rates determine production (or loss) of 

chemical species in the gas phase. The number of 

reactions that transform reactants into products varies 

from approximately 90 to several hundred, and the 

number of species may have a similar range. The 

selection of the chemical species and the group of 

governing chemical reactions, known as a chemical 

mechanism, are predetermined and are interchangeable 

in the CMAQ model as the knowledge base improves. 

1.4.2 Gas Phase Chemistry Solver 

Operator splitting in the CMAQ dynamical model 

allows gas-phase chemistry to be de-coupled from 

physical processes. As a consequence continuity 

equations for each gas-phase mechanism species are 

formulated and solved independently in each cell of the 

regular grid over column, row and level dimensions. 

The CCTM module computes the gas phase chemistry 

in a numerical model for reaction kinetics where 

reaction rates determine production, or loss, of 

chemical species in the gas phase. A simple first order 

ordinary differential equation (ODE) relates the rate of 

change of species concentration to production and loss 

terms on the right hand side, with one such equation for 

each species. Concentrations of species at a later time 

are obtained from an integration scheme for the first 

order ODE [9]. However, in the case of CMAQ, the 

ODE forms a coupled system of order N, the number of 

reacting species, with some set of initial values of each. 

The system is non-linear because the production and 

loss terms on the right hand side may include second 

and third order reactions for some species. Furthermore, 

because of widely varying time scales of the reactions, 

the system of ODE’s is stiff (see [9] for a definition). 

The ratio of largest to smallest eigenvalues of the 

Jacobian matrix is typically of the order of 1010 (or 

larger) in atmospheric chemistry problems and this 

represents an extreme case. The system of ODE’s of 

rank N needs to be solved many times for each cell in 

the grid domain of the advection time step scheme for 

the dynamical processes. Not surprisingly the 

execution time of the gas chemistry solver is a 

substantial fraction of the total wall clock time of a 

simulation and depends on the ODE solution method.  

1.4.3 The Gear Algorithm as Applied in CMAQ 

While the following description is predominantly 

focused on the Gear algorithm, results for the case of 

the Rosenbrock algorithm [10] are also included here. 

The Rosenbrock algorithm in CMAQ has been 

previously investigated by Delic [11] and uses the same 

sparse Gaussian elimination method discussed here for 

the Gear algorithm. The same FSPARSE algorithm 

was also applied to the Global Modelling Initiative 

(GMI) under contract to NASA and is reported in [12]. 

These are two of the three numerical integration 

schemes used in the CCTM module of CMAQ. The 

method proposed by Gear [13], was adapted by 

Jacobson and Turco [14]. This is explained by 

Jacobson [15] for AQM, and was later modified by the 

U.S. EPA for application to CMAQ. Even with the 

efficiencies developed in [14,15] the execution time is 

typically 60% of the total wall clock time of a 

simulation. Since the Gear solver is well documented 

[16] it will be summarized briefly here only to the 

extent needed to understand the application in CMAQ. 

The Gear method is a numerical ODE integration 

formula that is a multi-step and multi-order 

predictor-corrector algorithm, where the corrector part 

implements a Newton iteration requiring computation 

of a Jacobian matrix. After convergence is achieved a 

local truncation error is computed in an L2 norm over 

species and this is used to determine both the chemistry 

time step size and the order of the method. 

On entry the dynamical time step, Δtsync, is 

subdivided into chemistry time steps and, with an 

initial estimate, the Gear algorithm begins with an 

order one predictor formula. The predictor-corrector 
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method proceeds until a prescribed error tolerance in 

the local error is either achieved or not. If achieved, 

then the predicted concentration is accepted and the 

next chemistry time step, and the order of the 

integration formula, are estimated. Since the Gear 

method is a multi-order one, the next time step is 

estimated for the current order, one lower order and one 

higher order, based on the respective local errors. If 

either the convergence or error test fails, the integration 

is restarted at the beginning of the failed time step after 

a new computation of the Jacobian matrix, reduction of 

the time step size, and/or lowering of the order of the 

integration formula. These procedures are automated in 

the Gear algorithm subject to several heuristic choices 

to control computational demand including: 

 Update of the Jacobian matrix only after 

completion of a prescribed number of 

successful chemistry time steps, if the order 

changes, or if the convergence (or error test) 

fails. 

 Halting Newton iterations if convergence 

progress is insufficient 

 Limiting changes to the chemistry time step and 

the order of the method to once every p+1 steps 

for a p-th order method for stability reasons.  

The Rosenbrock algorithm differs from the Gear 

case in that it is not a multi-order, multi-step method. 

One predictor iteration is followed by three corrector 

iterations before computing the final solution to 

determine a new time step increment. At the time, 

modifications introduced in Refs. [14, 15] took 

advantage of vector processing on the pipelined vector 

architectures of Cray computers [17]. However, on 

Cray computers, the cost was prohibitive if the Gear 

method is applied to each cell of a multidimensional 

grid. Therefore one modification introduced in [14] 

was to apply the Gear algorithm to a block of grid cells 

simultaneously. This modification allowed vector 

instructions to be applied for an innermost loop over 

the block dimension length, NUMCELLS, equal to the 

size of the block (BLKSIZE). This method has the 

disadvantage that it requires a memory copy of 

concentrations from an array dimensioned by column, 

row, and level, into a one-dimensional array 

dimensioned by a cell index. Nevertheless, this 

blocking method worked well on Cray architectures 

with 128 word vector registers using a choice of 

BLKSIZE = 500 grid cells. However, such a choice has 

a memory copy penalty on current commodity CPUs 

where a choice of BLKSIZE larger than approximately 

64 leads to increased computational time. Another 

disadvantage of choosing larger values of BLKSIZE is 

that the time step size is the same for all cells in a block, 

and cells with faster rates of species concentration 

change may not converge as well as those cells with 

slower concentration rate changes (i.e., cells differ in 

“stiffness”). To ameliorate the negative consequences 

of disparate cell stiffness, the algorithm (JSPARSE 

herafter) in Refs. [14, 15] offers an option to order all 

cells in the grid into blocks of cells having similar 

stiffness, with each block having a length of 

NUMCELLS. 

Two additional improvements implemented in Refs. 

[14, 15] are applied in the JSPARSE procedure to 

exploit the sparse structure of the Jacobian in the direct 

Gaussian linear solver: 

1) Terms are ordered in the Jacobian matrix to 

reduce fill-in when applying decomposition 

and forward/back substitution. 

2) algebraic manipulations involving zero 

numerical values are eliminated in explicit 

“hardwired” coding using multiple levels of 

indirect subscript references. 

Both these improvements are implemented in 

symbolic manipulations that need be performed only 

once using the known (unchanging) sparse structure of 

the Jacobian matrix in the JSPARSE procedure. 

However, the use of complex loop ranges based on 

indirect array references that are evaluated only at 

runtime, prohibits parallelization of outer loop nests. 

When originally developed on Cray computers the use 

of indirect addressing was not a major performance 
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inhibitor because that architecture allowed hardware 

gather-scatter operations. However, today’s 

commodity architectures do not support hardware 

gather-scatter instructions and indirect addressing 

carries a penalty because it cannot be parallelized 

easily. It also leads to excessive translation look-aside 

buffer (TLB) cache look-up that inevitably stalls a 

commodity CPU. For some details of analysis for this 

performance bottleneck see Young and Delic [18]. The 

exception is the Intel MIC® architecture [7] which 

does support gather/scatter operations in hardware.  

In the U.S. EPA implementation of the Gear 

algorithm additional changes include: 

 code changes to integrate into the CCTM 

structure, 

 prohibition of negative concentration values 

that are possible when rapid species depletion 

occurs, 

 choice of a relative error (RTOL) of 10-3 and 

absolute error (ATOL) 10-9 ppm. 

It should be noted that CMAQ, unlike the GMI [12] 

implementation does not apply mass conservation for 

species. 

However, error tolerance values may be changed (as 

input parameters in CMAQ), and they are based on 

heuristic proposals by Byrne and Hindmarsh [19]. It is 

important to note that these tolerances are applied to 

the L2 norm of species errors for all cells in a block of 

cells. Therefore, not all individual species in a block of 

cells may satisfy them. Application of a mini-max 

norm such as L∞ would be considerably more stringent, 

but is also more expensive in computation time. Also, 

more accurate results would be obtained with a block 

size (BLKSIZE) of one, i.e., a single cell. However, 

this choice also increases computation time 

substantially. 

2. New Sparse Matrix Algorithm in CMAQ 

For the reasons outlined in the previous Sections, a 

new sparse solver was developed to replace the legacy 

method of Refs. [14,15] and this section gives some 

detail on two of the major performance enhancements 

for CMAQ with the Gear solver. The same description 

applies to the Rosenbrock algorithm since it shares the 

same computational modules with the Gear case. The 

first change replaces the sparse matrix solver used for 

chemical species concentrations in the standard U.S. 

EPA distribution. The second modification integrates 

the new solver into the transit over grid cells so that 

separate blocks of cells are distributed to different 

threads. Applying both modifications together 

improves CMAQ efficiency. This was previously 

observed to be the case in application to CMAQ with 

the Rosenbrock solver [11]. 

2.1 Gaussian Elimination in the Gear Solver 

The Gear chemistry solver in CMAQ applies direct 

Gaussian elimination [20] of a sparse matrix system Ax 

= b many millions of times per simulation. The 

dimension of matrix A is determined by the number, N, 

of reacting chemical species (N = 149 in this study). 

While the species matrix has some N2 = 22,201 

elements, the number of non-zero entries, NZ, is 1338 

(day) and 1290 (night) for chemistry mechanisms, 

respectively. The matrix solution has three stages: 

(i) decomposition A=LU, 

(ii) forward solve for Lz=b, 

(iii) backward solve for Ux=z, 

where L and U, are lower and upper triangular 

matrices such that A=LU. For CMAQ, matrix A has 

large condition numbers and is diagonally dominant by 

many orders of magnitude, and therefore pivoting is 

not applied in step (i). Scaling is applied to A to permit 

exception handling at runtime. This allows underflows 

and avoids the execution halting as a result of 

overflows when no scaling is used. The above solution 

is applied to each block of grid cells passed to the 

chemistry solver. The choice of block size is a user 

selectable parameter (BLKSIZE) but the actual value 

has consequences for cache behavior on commodity 

CPUs at runtime [11]. For all test cases reported here 

the choice was limited to a default of BLKSIZE = 50. 
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2.2 New Sparse Matrix Solver 

This section summarizes the algorithmic choices that 

transform JSPARSE into a new procedure (FSPARSE 

hereafter) for the Gear algorithm. The same method 

applies to the Rosenbrock chemistry algorithm that was 

previously described in [11]. First of all, a few words 

about sparse matrix storage schemes are in order. All 

sparse matrix algorithms reference only non-zero 

elements and store the value in an array, but they differ 

in the storage method for the row and column location in 

the full matrix. Each scheme requires indirect subscript 

references at some level, but the implementation has 

consequences for parallel algorithm opportunities. The 

Triplet storage scheme (used in JSPARSE) scans rows 

and columns of the matrix and stores column and row 

index values in two integer arrays. Alternatively, for NZ 

non-zero elements in the matrix, the Compressed 

Column (CC) scheme scans down successive columns 

and uses an integer array i of length NZ together with 

another pointer array p of length N+1 so that row indices 

of entries in column j are stored in integer arrays i(p(j)) 

through i(p(j+1) -1). The CC scheme is described in 

chapter 2 of Davis [21] for the C language case. In 

another method, Compressed Row (CR) storage scans 

across successive rows and uses a similar pointer 

scheme described for CC (above). The starting point in 

FSPARSE is the CSparse C language library developed 

by Davis [21] which uses the CC storage form and has 

been implemented with substantial modification in the 

FSPARSE version of CMAQ. The CSparse library is 

quite general and extensive, but only the sparse 

Gaussian procedures have been adopted for this CMAQ 

application. CSparse allows a generalized factorization 

of the type PAQ = LU, where P is obtained from partial 

pivoting and Q is chosen to reduce fill-in in LU. In 

CMAQ the permutation matrix Q, is in effect, the result 

of the re-ordering step taken over from the JSPARSE 

procedure [14]. However, P = I (the identity matrix) is 

the choice in the CMAQ model because the matrix A is 

diagonally dominant and no pivoting is applied. 

The CSparse procedures listed in Table 3 have been 

extracted and translated into FORTRAN for integration 

into the FSPARSE version of the Gear algorithm. 

However, local modifications have been made. For 

example, cs_lsolve and cs_usolve, will not allow 

parallel/vector instructions on inner loops because the 

CC form uses indirect addressing of array indexes on 

the left hand side of the assignment (“=”). This is 

demonstrated by the compiler message in the extract 

from FSPARSE shown in Fig. 1. 

However, if the indirect reference is on the right 

hand side then parallel/vector instructions are enabled. 

The transformation is achieved by using a Compressed 

Row (CR) storage scheme as is demonstrated in Fig. 2. 

The suggestion for the CR form enabling a 

parallel/vector algorithm is from Björck [22]. Because 

of this benefit of the CR form, FSPARSE has an option 

to convert L and U to the Compressed Row (CR) 

storage scheme after the sparse CC decomposition step 

for A = LU. This enables vector SSE instructions to 

schedule the inner loops of forward and backward 

solve steps (see Section 2.1) while also allowing 

parallel potential in the outer loop. Such parallel loop 

nests may easily be parallelized in a many core version, 

or whenever nested parallel threads are enabled in the 

OpenMP model. 

In the code for the solver part of FSPARSE that 

corresponds to Fig. 2, the forward solve is performed 

for all cells in a block of cells as shown in the example 

of Fig. 3. 
 

Table 3  C language procedures from CSparse translated 
to FORTRAN in FSPARSE. 

CSparse procedure Description 

cs_compress Map Triplet to CC storage 

cs_lu Driver for LU decomposition 

cs_spsolve Sparse solve for L, and U 

cs_reach Reach function 

cs_dfs Depth first search 

cs_lsolvea Solve Lz = b 

cs_usolvea
 Solve Ux = z 

cs_norm Compute 1-norm of A 
a Converted to parallel and vector form using Compressed 
Row (CR) format for L and U 
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!  inner loop _will_ not vectorize in CC format – compiler message: 
!  row_f, Loop not vectorized: data dependency 
!         Loop unrolled 4 times 
! 
      col_f: do s_j = 0, N - 1                              ! col index 
           s_x(s_j) = s_x(s_j) / s_Lx( s_Lp(s_j,sn),sn ) 
           row_f: do s_k = s_Lp(s_j,sn)+1 , s_Lp(s_j+1,sn)-1 
             s_x(s_Li(s_k,sn))=s_x(s_Li(s_k,sn)) - s_Lx( s_k,sn)*s_x(s_j) 
           end do row_f 
      end do col_f 

Fig. 1  Example of FORTRAN version of compressed column (CC) format for a solve loop that inhibits vector instructions 
on the inner loop. 
 

!  inner loop _will_ vectorize in CR format – complier message: 
!  col_fr: Generated 2 alternate versions of the loop 
!          Generated vector sse code for the loop 
!          Generated a prefetch instruction for the loop 
! 
      row_fr: do s_i = 1, N - 1                            ! row index 
            s_s = s_x(s_i) 
            col_fr: do s_j = L_w(s_i,sn) , L_w(s_i+1,sn)-2 
              s_s = s_s - L_Cx( s_j,sn ) * s_x( L_Cj(s_j,sn) ) 
            end do col_fr 
            s_x(s_i) = s_s 
      end do row_fr 

Fig. 2  Example of FORTRAN version of compressed row (CR) format for a solve loop that does allow vector instructions 
for the inner solve loop. 
 

row_fr1: do s_i = 1, NS - 1                             ! row 
    DO NCELL = 1, NUMCELLS                     ! vector loop # 31 
       rivot(NCELL) = K1( NCELL ,s_i) 
    ENDDO 
    col_fr1: do s_j = L_w(s_i,sn) , L_w(s_i+1,sn)-2         ! col 
          DO NCELL = 1, NUMCELLS               ! vector loop # 32 
              rivot(NCELL) = rivot(NCELL) - Lr_Cx( NCELL,s_j ) * 
&                                     K1( NCELL, L_Cj(s_j,sn) ) 
          ENDDO 
    end do col_fr1 
 
    DO NCELL = 1, NUMCELLS                      ! vector loop # 33 
        K1( NCELL,s_i) = rivot(NCELL) 
    ENDDO 
 end do row_fr1 

Fig. 3  Example of FORTRAN version of Compressed Row (CR) format for a solve loop that expands the example of Fig. 2 
to vector loops over blocks of cells of length NUMCELLS. 
 

In Fig. 3 the outer row loop (row_fr1) is not 

parallelizable because of the recurrence on array K1. 

The column loop (col_fr1) is parallelizable because the 

CR format places the indirect reference on the second 

index of the K1 array. All loops contain a vector loop 

on the cell index NCELL for the current block and 

NUMCELLS is the blocksize. At the cost of a memory 

copy, a temporary array (rivot ) is introduced so that a 

vector-inhibiting recurrence is avoided on the 

innermost loop (# 32). 

2.3 Driver Procedure 
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The CCTM driver procedure is CHEM in CMAQ 

and has major loops over the blocks of cells in a grid 

dimensioned by column, row, and level. The MPI 

implementation partitions the entire grid on the column 

and row dimensions into sub-domains where the 

number of cells in each sub-domain depends on the 

number of MPI processes (NP). Each sub-domain has 

blocks of cells that are processed in the solve steps as 

described in Sections 2.1 and 2.2. The number of 

blocks is calculated from the BLKSIZE parameter 

choice in a grid initialization procedure GRID_CONF. 

However, the number of blocks diminishes as NP 

increases. For each MPI process the chemistry solver 

time step for each block is independent of all others, 

and different blocks are distributed amongst available 

threads in a thread parallel team using an appropriate 

scheduling algorithm. This strategy is attractive 

because it creates coarse parallel granularity for thread 

teams as a result of the substantial scope of the 

contained arithmetic operations. Thus the Gear 

algorithm is applied independently by each thread in 

the team to its own chosen block of cells. 

Table 4 shows the subroutines modified in the 

FSPARSE version of CMAQ. This indicates those 

subroutines inlined into the new version of CHEM that 

has two large thread parallel regions: one for reordering 

(as in the original JSPARSE version), and a second for 

the chemistry solution with time step integration. Both 

parallel regions contain loops over the total number of 

grid blocks for each MPI process, but the first takes 

only a small fraction of the time spent in CHEM. 

The new version of CHEM was created by 

successive code structure modifications of the standard 

U.S. EPA Gear solver without changing the science of 

the model in any way. Specific restructuring steps 

applied to the standard CMAQ gas chemistry solver 

included: 

 New modules for procedures (see Table 3) 

 Arrangement of inner loops so that they enable 

vector instructions. 

 Declaration of thread parallel regions by 

insertion of OpenMP directives and 

classification of local (thread private) and 

global (shared) variables. 

 Simplification/streamlining of redundant code.  

The modified FSPARSE version of CMAQ applies a 

thread parallel strategy that has three prongs: 

1) Partitioning storage into global shared variables 

and those private to threads. 

2) Distribution of NUMCELLS sized chunks of 

the grid domain to separate threads in a parallel 

thread team. 

3) Ensuring each thread has inner loops that 

vectorize where ever possible. 

The two parallel regions in the FSPARSE CHEM 

version invoke OpenMP thread parallel teams that 

execute either on a host processor or on many 

integrated core® (MIC) processors through the offload 

option in the Intel compiler. This thread-vector parallel 

strategy can only succeed if there is sufficient coarse 

grain parallel work for each thread. This is achieved 

with the modifications described above by creating a 

large parallel region for the block loop and it is this 

loop that has a diminishing range as the number of MPI 

processes increases. 
 

Table 4  The U.S. EPA procedures of the Gear solver 
modified in the FSPARSE algorithm. 

CMAQ 
procedure 

Description of computational function 
in separate modules 

GRID_CONF Define grid and set BLKSIZE 

GRVARS Declare allocatable arrays 

GRINIT Initialize and allocate arrays 

JSPARSE 
Define chemistry structure and symbolic 
Gaussian elimination 

CHEM 
Loop over grid blocks and call Gear 
solver 

CALCKS Prepare reaction rate coefficients 

PHOT Prepare photolytic rate coefficients 

SMVGEARa Implementation of Gear ODE algorithm 

SUBFUN Rate of change of species concentrations

PDERIV Jacobian matrix 

DECOMP LU decomposition 

BACKSUB Forward and backward solve 
a Inlined into FSPARSE CHEM procedure with calls to the 
others in this table 
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3. Test Bed Environment 

3.1 Hardware 

The hardware systems chosen were the platforms at 

HiPERiSM Consulting, LLC, shown in Table 5. Nodes 

20 and 21 host two Intel E5v3 CPUs with 16 cores and 

each node has four Intel Phi® co-processor (MIC) 

processors [7] with, respectively, 60 and 59 cores each. 

These are the base nodes of a heterogeneous cluster 

that includes an HP blade server hosting nodes 27 to 34 

with dual 4-core Intel E5640 CPUs. The total core 

count of this cluster is 128 with ~2 Tflops (peak) 

floating point performance in single precision. The 

MPI executions are launched across multiple 

combinations of these nodes using an Infiniband (IB) 

fabric with a theoretical bandwidth limit of 40G 

bits/sec. This cluster allows for comparison of the 

FSARSE hybrid (MPI + OpenMP) parallel versions of 

CMAQ with the original EPA JSPARSE version. 

3.2 Compilers 

This report implemented the Intel Parallel Studio® 

[7] (release 17.6), for CMAQ on 64-bit Linux operating 

systems. The HiPERiSM Consulting, LLC, version of 

CMAQ, with multi-threaded parallelism, was compiled 

and executed for this heterogeneous cluster. Other 

compilers have been used in the past, but results 

reported here will be confined to the Intel case. 
 

Table 5  Test bed platforms and their attributes. 

Platform 
Node20-21 
(each node) 

Node27-34 
(each node) 

Processor 
Intel™ 

E5-2698v3 
Intel™ E5640

Peak Gflops (SP) ~589 ~170 

Power consumption 135 Watts 80 Watts 

Cores per processor 16 4 

Processor count 2 2 

Total core count 32 8 

Clock 2.3 GHz 2.67 GHz 

Band-width 68 GB/sec 25.6 GB/sec

Bus speed 2133 MHz 2933 MHz

L1 cache 32 KB 32 KB 

L2 cache 256 KB 256 KB 

L3 cache 40 MB 12 MB 

3.3 Episode Studied 

The 5.3b release of CMAQ was used in all results 

reported here with the source code and model episode 

data available at the download site [4]. This 24 hour 

episode was for July 1st, 2011, using the cb6r3_ae6_aq 

mechanism with 149 active species and 329 reactions. 

For day/night chemistry this results in 1338/1290 

non-zero entries in the Jacobian matrix. The episode 

was run for a full 24 hour scenario on a 80 x 100 

California domain at 12 Km grid spacing and 35 

vertical layers for a total of 280,000 grid cells. This 

case represent a modest grid size but is substantial 

enough with the number of species and reactions 

included. 

Partitioning of the grid amongst the available 

number of MPI processes (after division into blocks of 

50 cells) gives 280,000/50 = 5600 blocks for NP = 1, 

and 5600/NP thereafter, when NP > 1. For example, 

with 8 MPI processes there are approximately 700 

blocks per MPI process. As a result the workload per 

thread is also diminished. Thus both increasing MPI 

process and OpenMP thread count have consequences 

for performance scaling because the number of blocks 

is further subdivided. 

4. Performance 

4.1 Speedup and Scaling 

In this section two performance metrics are defined 

to assess thread parallel performance in the FSPARSE 

modified code for CMAQ: 

a) Speedup is the gain in runtime over the standard 

U.S. EPA runtime, 

b) Scaling is the gain in runtime with thread (or 

MPI process) counts larger than 1, relative to 

the result for a single thread (or MPI process).  

For the CCTM each grid of cells is partitioned into 

blocks of size BLKSIZE and these blocks are 

distributed to threads in an OpenMP thread team in 

FSPARSE. In the previous study for the Rosenbrock 

algorithm [11] values of 16, 32, 48, and 64 were 
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investigated for impact on wall clock times due to 

cache effects. However, variations in wall clock time 

for BLKSIZE changes in this range were small and 

shrank as the number of threads increased. 

Nevertheless, wall clock time did rise for BLKSIZE 

greater than 64 therefore in this study of the CMAQ, 

the EPA default value of BLKSIZE = 50 was used. 

4.2 MPI Scaling 

CMAQ in the U.S. EPA JSPARSE version was 

scaled on the homogeneous cluster (node20 and 21) in 

the MPI range 1 to 64 processes for both Gear and 

Rosenbrock algorithms. Wall clock time (in minutes) is 

shown in Fig. 4 where a sharp decline in improvement 

is visible, especially above 8 MPI processes. The MPI 

parallel efficiency in Fig. 5 is calculated from speedup 

divided by the process count. This average reflects 

values of ~70% and ~55% with 32 and 64 MPI 

processors respectively. The latter efficiency value 

suggests that, on average, the CPU is idle half of the 

wall clock time. This is caused by the increasing 

dominance of MPI communication time over 

arithmetic compute time, specifically an MPI barrier 

call at the synchronization time step. 

4.3 Results for one MPI Process 

This section presents results for serial execution with 

one MPI process (NP = 1) on node20 and compares  
 

 
Fig. 4  Wall clock time (minutes) versus MPI process count 
(assigned row x column) for the EPA JSPARSE version of 
CMAQ for Rosenbrock and Gear algorithms. 

 
Fig. 5  Corresponding to the times of Fig. 4 this shows MPI 
parallel efficiency versus MPI process count for the EPA 
JSPARSE version of CMAQ for Rosenbrock and Gear 
algorithms. 
 

JSPARSE and FSPARSE versions of CMAQ. For this 

discussion Table 6 defines the major CMAQ science 

processes and their acronyms. 

To compare JSPARSE and FSPARSE version, Figs. 

6 and 7, respectively, show the fraction of wall clock 

time as a function of science process, for Gear and 

Rosenbrock algorithms. The CHEM and AERO 

processes dominate with diminishing contributions to 

wall clock time for others. For the Gear case with 

JSPARSE (Fig. 6) the fraction of the total runtime used 

by CHEM dominates at ~50%. The next largest 

fraction, at ~26%, is AERO, and all other science 

processes have considerably smaller fractions. For the 

Rosenbrock case with JSPASE (Fig. 7) AERO is the 

dominant process, but CHEM is close to ~33%. 

Therefore any improvement in the CHEM subroutine 

will significantly impact the total wall clock time. Such 

an improvement is visible in the FSPARSE case for 

both Gear (Fig. 6) and Rosenbrock (Fig. 7) algorithms 

when comparing the effects of increasing thread count 

in the range 8, 12, 16 (omp8 to omp16). In the last case 

the FSPARSE CHEM fraction is half of the EPA 

JSPARSE value. This shows that the fraction of time 

consumed in CHEM diminishes, and as it does so the 

fractions of other science processes correspondingly 

increase. 
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Table 6  CMAQ science processes and the module name. 

Process and function 
module 
name 

CCTM Chemical transport model CHEM 

Aerosol species processing AERO 
Asymmetric convective model (ACM) for 
vertical diffusion 

VDIFF 

Photolysis processes PHOT 

Advection in the horizontal plane HADV 

Advection in the vertical (Z) direction ZADV 

ACM and resolved cloud processes CLDPROC

Horizontal diffusion HDIFF 

Couple concentration values for transport COUPLE 

Decouple concentration values for transport DECOUPLE
 

 
Fig. 6  Fraction of wall clock time (percent) by science 
process in CMAQ for the FSPARSE Gear algorithm 
compared to JSPARSE (EPA) for NP = 1 MPI process and 
OpenMP thread counts of 8, 12, and 16 (omp8, omp12 and 
omp16). 
 

 
Fig. 7  Fraction of wall clock time (percent) by science 
process in CMAQ for the FSPARSE Rosenbrock algorithm 
compared to JSPARSE (EPA) for NP=1 MPI process and 
OpenMP thread counts of 8, 12, and 16 (omp8, omp12 and 
omp16). 

In more detail, Fig. 8 shows the speedup of 

FSPARSE over JSPARSE for thread counts of 8, 12, 

and 16, in 288 individual calls to CHEM for the full 24 

hour simulation with the best results for 12 or 16 

threads  (with speedup ~3). Because of the core count 

limitations on the blade server (node27 to 34), a default 

of 8 threads is chosen for execution on the 

heterogeneous cluster. 

Table 7 lists the total time (in minutes) expended 

individually for each of the physical processes in 

CMAQ for the 24 hour episode described in Section 

3.3. The results for node20 with NP = 1 are separated 

for Gear and Rosenbrock CCTM algorithms in CHEM. 

The original (JSPARSE) results are compared with the 

FSPARSE version for 8 threads, and the Total entry 

shows the speed up in parentheses: 1.32 (Gear) and 

1.14 (Rosenbrock), respectively. 

4.4 MPI Speedup and Scaling (Heterogeneous Cluster) 

To compare the effects of increasing MPI process 

count for JSPARSE and FSPARE versions of CMAQ, 

Table 8 shows the fraction of wall clock times in MPI 

communication, serial computation, and OpenMP 

regions (in the case of FSPARSE).  What was only 

serial computation in JSPARSE, is split into serial and 

OpenMP fractions in FSPARSE. Two important 
 

 
Fig. 8  Parallel thread speedup over the standard U.S. 
EPA model in 288 calls to CHEM with the Gear algorithm 
for 8, 12 and 16 threads (OMP8 to OMP16), for NP = 1 
MPI process. 
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Table 7  CMAQ wall clock times (minutes) by science 
process for a 24 hour simulation with NP = 1 for the Gear 
and Rosenbrock algorithms in the CTM. 

Science 
process 

JSPARSE FSPARSE (8 threads)

Gear Rosenbrock Gear Rosenbrock

Total 496.2 390.2 
374.9 

(x1.32) 
328.3 

(x1.14) 

CHEM 248.2 128.7 116.7 68.8 

AERO 129.8 135.9 140.3 141.5 

VDIFF 54.0 57.7 54.7 55.0 

PHOT 17.3 18.3 17.4 17.2 

HADV 12.9 13.7 12.9 12.9 

ZADV 15.6 16.5 15.5 15.4 

CLDPROC 11.6 12.2 11.7 11.7 

HDIFF 2.20 2.36 2.18 2.18 

COUPLE 1.97 2.10 1.80 1.80 

DECOUPLE 2.57 2.73 1.82 1.82 
 

Table 8  For the heterogeneous cluster this shows CMAQ 
fraction of wall clock time (percent) in MPI, serial, or 
OpenMP time, in a one-day simulation, for the Gear 
algorithm in the CTM for the number of MPI processes (NP) 
shown in the first column. 

NP 
JSPARSE FSPARSE (8 threads) 

MPI Scalar MPI Scalar OpenMP

4 13.5 86.5 10.9 61.0 28.1 

8 15.1 84.9 11.0 62.1 26.9 

16 27.2 72.8 15.5 51.3 33.2 
 

observations are that MPI process time increases with 

increasing NP, but less so for the FSPARSE case. Also, 

as expected, note the diminished scalar time in the 

FSPARSE case. 

Fig. 9 shows the speedup of the FPSARSE version 

(with 8 threads) over the EPA JSPARSE original for 

Gear and Rosenbrock algorithms. These executions 

were on the heterogeneous cluster, with one MPI 

process on node20, and others on individual blade 

nodes for NP = 4, 8, 16. Speed up in the Rosenbrock 

case is less than that of the Gear algorithm because 

there is less arithmetic computation per thread (i.e., 

reduced computational intensity per thread). A notable 

feature of Fig. 9 is the diminution in speedup for NP = 

16 cases. This is the consequence of two observations. 

First is the diminished workload per thread because of 

the reduced block count with increasing NP (as noted 

above in Section 3.3). Second is that 4 MPI processes 

are on each of the two fastest nodes. Overall the 

speedup ranges from 1.16 to 1.46 (Gear) and 1.01 to 

1.25 (Rosenbrock). 

4.5 MPI Speedup and Scaling (Homogeneous Cluster) 

For execution on the homogeneous cluster (node20 

and 21), Figs. 10 and 11 compare performance results 

for Rosenbrock and Gear algorithms with 8, 12, and 16 

threads, on each node, and NP = 1, 4, and 8. Speedup 

with FSPARSE is relative to the EPA JSPARSE 

version executed on the same homogeneous cluster 

configuration. Here, for Rosenbrock, the speedup  

 
Fig. 9  Parallel thread speedup over the standard U.S. EPA 
model for the Gear and Rosenbrock algorithms with 8 
threads, for NP = 1 to 16 MPI processes (assigned row x 
column) on the heterogeneous cluster. 
 

 
Fig. 10  Parallel thread speedup over the standard U.S. 
EPA model for the Rosenbrock algorithm with 8,12, and 16 
threads, for NP = 1 to 16 MPI processes (assigned row x 
column) on the homogeneous cluster. 
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Fig. 11  Parallel thread speedup over the standard U.S. 
EPA model for the Gear algorithm with 8,12, and 16 threads, 
for NP = 1 to 16 MPI processes (assigned row x column) on 
the homogeneous cluster. 
 

ranges from 0.85 to 1.14 (8 threads), 0.97 to 1.14 (12 

threads), and 1.03 to 1.16 (16 threads). Whereas for 

Gear, the speedup ranges from 0.98 to 1.39 (8 threads), 

1.22 to 1.48 (12 threads), and 1.27 to 1.53 (16 threads). 

Speedup for the Rosenbrock algorithm is overall less 

than that for Gear due to less arithmetic work per 

thread compared to Gear. It is interesting to observe the 

increasing speedup for 16 threads when NP = 8, even 

though cores are oversubscribed. The core count is 

limited to 32 per node and this means that the 

FSPARSE case may be limited by thread population 

counts per node. Never the less, cores can be 

oversubscribed by hosting more than one thread on 

each. Such oversubscription occurs with16 OpenMP 

threads per MPI process for NP = 8 (with 4 on each 

node) resulting in a total 64 threads per node sharing 32 

cores. For example, with 16 threads and NP = 8, 

speedup is in the range 1.03 (Rosenbrock) and 1.27 

(Gear). Part of the explanation for this phenomenon (in 

the Gear case) when cores are oversubscribed, is due to 

the fact that calls to CHEM from different grid cell 

blocks are asynchronous and contention for core 

resources on the CPU is ameliorated. 

Table 9 repeats the measurements of Table 8, but 

now for the homogeneous cluster case of node20 and 

21 again with 8 threads. Whereas the fraction of wall 

clock time in MPI communication rises in the  

Table 9  For the homogeneous cluster this shows CMAQ 
fraction of wall clock time (percent) in MPI, serial, or 
OpenMP time in a 24 hour simulation for the Gear 
algorithm in the CTM for the number of MPI processes 
(NP) shown in the first column. 

NP 
JSPARSE FSPARSE (8 threads) 

MPI Scalar MPI Scalar OpenMP

4 11.4 88.5 11.5 57.3 31.1 

8 13.2 86.7 9.7 46.5 43.6 

16 17.8 82.1 11.7 45.9 42.2 
 

JSPARSE case, it is significantly reduced in the 

FSPARSE algorithm. Also the increased fraction in the 

OpenMP parallel region is obvious. 

5. Numerical Analysis 

5.1 Chemistry Convergence Criteria 

To understand numerical precision this section 

discusses some numerical metrics that affect 

concentration value predictions in CMAQ. In the 

CCTM convergence is controlled in both Gear and 

Rosenbrock methods by accuracy parameters ATOL 

and RTOL. In the standard U.S. EPA version of 

CMAQ the default values chosen are RTOL = 1.E-03 

and ATOL = 1.E-09 for the Gear algorithm, whereas 

Rosenbrock uses ATOL = 1.E-07. The choice ATOL = 

1.E-09 for Gear is based on the heuristic observations 

in Ref. [19]. 

5.2 Norms in the Concentration Solution 

There are two classes of error in this application of 

the Gear solver. The first is the global and local error 

metrics used in controlling the progress of the Gear, or 

Rosenbrock, algorithm chemistry time stepping 

algorithm controlled by the parameters RTOL and 

ATOL. The other class of error is demonstrated in 

metrics that show precision after the decomposition 

and solve steps of the sparse linear system Ax = y. Such 

metrics are monitored in FSPARSE with an option to 

calculate several types of norms including |A|, |x|, and 

|Ax-y|. In the CC formulation the norms are chosen as 

the infinity norms, norm(Ax – y, inf), norm(x, inf), and 

norm(y, inf), where the length of the vector (Ax-y, x, or 
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y) is the number of chemical species. The “inf” norm 

selects the maximum value of each vector. While 

details are not shown here these norm results suggest 

that the residual remains very small in the FSPARSE 

algorithm for the chemistry solver. 

Previous study has shown that correlation between 

the value of ATOL and the norm of the residual for 

solution of the sparse linear system is negligible. This 

leaves open the choice that optimizes both runtime and 

accuracy for species concentrations. 

5.3 Species Concentration Predictions 

A direct comparison of accuracy for species 

concentration values predicted by the FSPARSE 

version against the U.S. EPA standard release of 

CMAQ is shown in Figs. 12 (a) to (d) for four selected 

species concentrations: O3, CO, SO2, and NO2, 

respectively. These are absolute errors for all 8,000 

concentration values of each selected species in layer 1 

at the end of a one-day simulation. The solid line is the 

species concentration value predicted by JSPARSE for 

a single MPI process (NP = 1) ranked in increasing 

magnitude from left to right. Corresponding to each 

value, the difference (scattered points) is the absolute 

error value of the concentration between FSPARSE 

and the JSPARSE result. The first feature to note in the 

results is that O3 and CO concentration values are of 

similar magnitude and differ in less than an order of 

magnitude over the full range. Whereas, SO2 varies by 

over four orders of magnitude, and NO2 by two orders 

of magnitude. Therefore a uniform precision in 

significant figures of accuracy would have to be more  

  
(a)                                                   (b) 

  
(c)                                                        (d) 

Fig. 12  For the FSPARSE GEAR solver of CMAQ (with 8 OpenMP threads) this shows the species concentration absolute 
error (scattered points) and concentration value (solid line) for 8000 values in layer 1 of the domain for species O3 (a), CO (b), 
SO2 (c), and NO2 (d). The ranking is in increasing concentration value from left to right. 
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than 4, and this is hardly possible if a relative tolerance 

RTOL = 1.E-03 is applied for the L2 norm over species 

concentration in the Gear convergence criterion. The 

second feature to note is that the absolute error 

threshold ranges from 1.E-02 (O3) to 1.E-05 (CO) 

below the corresponding concentration value. 

Therefore the anticipated accuracy in the Gear solver in 

CMAQ differs for different species. However, in view 

of the precision issues noted above, these results are 

deemed as acceptable pending test with constrained 

values of RTOL and ATOL. However, such tests are 

limited by the use of single precision values passed to 

the CCTM by other CMAQ processes. 

6. Lessons Learned 

6.1 Benefits of the FSPARSE Method 

Comparing performance for CMAQ 5.3b in the new 

OpenMP parallel version with the U.S. EPA release 

with either Gear or Rosenbrock chemistry solver 

showed: 

 A speedup in the range 0.9 to 1.5 depending on 

the parallel thread and MPI process counts.  

 Comparable numerical precision in species 

concentration values. 

6.2 Comparing Species Concentrations 

A comparison of species concentration values 

predicted by JSPARSE and FSPARSE versions of 

CMAQ showed acceptable agreement for species such 

as O3, NO2, NO3, SO2, and others not shown. 

Remaining differences in species concentration values 

could be due to cumulative error propagation in the U.S. 

EPA method. 

7. Conclusions 

This study reported on major performance 

enhancements for the Community Multi-scale Air 

Quality Model (CMAQ) chemistry-transport model 

(CCTM) that add new levels of parallelism and replace 

the legacy algorithm in the Gear and Rosenbrock 

methods. The CCTM is computationally intensive 

when the Gear (or Rosenbrock) algorithm is used to 

solve a stiff system of ordinary differential equations 

(ODE), with sparse Jacobians, and accounts for over 50% 

(or 33%) of the wall clock time of a simulation. To 

improve performance two important changes were 

made, the first of which replaced the sparse matrix 

solver. The second modification integrated the new 

solver into the transit over the grid domain so that 

separate blocks of cells are distributed to different 

threads in a team. The resulting sparse solver 

(FSPARSE) replaced the legacy JSPARSE sparse 

method. The FSPARSE solver is portable across 

hardware and compilers that support vector and thread 

parallelism and it adds both to the existing distributed 

memory (message passing) level in the standard EPA 

CMAQ release. Observed numerical differences 

between the two methods are related to the numerical 

precision achieved in each, and were observed to be 

due (in part) to the way arithmetic precision is treated 

in the U.S. EPA method. On Intel platforms a 24-hour 

simulation on a continental U.S.A. grid of 280,000 

cells, showed that with 8 to 16 threads the FSPARSE 

version of CMAQ typically provides significant 

speedup over the standard EPA release without loss of 

precision in predicted concentration values. 
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