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Abstract: The time series is an extensive data set in which you have information about a phenomenon of nature, these data contain 
certain values that correspond to stochastic errors that occur at the time of obtaining the data. These series are non-stationary in nature 
so it is assumed that they have white noise, which, for geodetic calculations that require a lot of data accuracy, such as velocity field, 
gravity, geoid undulation, direct and inverse problem, impact on the final results. The random error is known as white noise, which can 
be eliminated by using functions that work in variable time and frequency, this new series without noise, is the result of the application 
of a useful tool called Wavelet, within the types of wavelet is the Haar family that analyzes series with abrupt changes. It is this study 
was performed automatically the elimination of white noise present in three time series of scale values of the SIRGAS-EPEC station by 
using the Discrete transformed Wavelet type Haar in order to obtain the clean signal of noise, its energy retained and graphs of the 
resulting series. It was possible to obtain the graphs of the three series with and without noise, in which a percentage of energy retained 
was 97.792%, 99.811%, 90.852% in series 1, 2 and 3 respectively. The application of wavelets of the Haar type allowed to obtain the 
three series without noise, in the case of series 1 and 2. 
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1. Introduction   

In recent years a new methodology has been 

introduced to represent phenomena that vary over time, 

due to this behavior several techniques have been 

implemented to analyze these changes and determine 

their behavior in the future. One of the most used tools 

in the study of signals or series, is the Fast Fourier 

Transform (FFT) [1], however the behavior of the 

signals of the series does not vary only in time also in 

frequency [2, 4], since the decade of the 80s has 

evolved in the study of time series with a new method 

called Wavelets. 

In the study of the phenomena that present time 

series, the data of them contain certain values that 

correspond to stochasticity when they are obtained [5]. 
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These random values correspond to the white noise 

present in the series. Frequently the treatment of the 

series has been done with FFT [6], STFT (Short 

Fourier Transform) [1], which process in a better way 

stationary signals located in time because their 

frequency does not vary and when passing from the 

frequency domain to the time domain loses information 

[1, 3, 7], in order to Wavelet is chosen, which is 

efficient for the analysis of non-stationary signals and 

fast transience, which avoids this loss of data [8, 9]. 

A wavelet is an oscillatory signal, of short duration 

and finite energy concentrated in a time interval around 

a point [1, 3, 7, 8]. Wavelets are basic functions of the 

Wavelet Transform generated from a mother function 

[10], which represents a signal in translated and dilated 

versions of a finite wave. The Wavelet Transform is not 

only local in time, but also in frequency [9], which is 

the main advantage compared to Fourier analysis [3]. 

The wavelet transform is expressed as: 
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Where “a” is the scale factor (dilation), “t” is the 

time (translation) and “x” is the position. The function 

ψ is called “mother wavelet”; first, wavelet because it 

is of an oscillating nature and of finite duration 

(compact support) and it is called mother for serving as 

the basis for the generation of the remaining window 

functions [3]. Among the best known wavelet families 

are: Haar, Daubechies, Coiflets, Symlets, Biorthogonal, 

Meyer, Mexican hat, Shannon and Morlet [5, 11]. 

In the analysis of non-stationary data, there are two 

types of wavelets, the Wavelet Continuous Transform 

(CWT) and the Discrete Wavelet Transform (DWT) [1, 

7]. In the numerical analysis of the DWT it must be 

considered that the data is discretized and not 

stationary, this idea was developed by Mallat in 1988, 

who implemented an algorithm based on sequential 

filters, which allow the Wavelet Transform to be 

obtained instantaneously represented in the Mallat tree 

[12]. The scale is changed through operations of 

interpolation upsampling and downsampling. The 

upsampling (↑ 2) consists of increasing the sampling 

rate by inserting new samples into the signal and the 

downsampling (↓ 2) removes samples of the signal, 

thus reducing the sample rate [13]. 

The signal passes through two complementary filters: 

low-pass filter related to the scaling function that gives 

a global view of the signal and high-pass filter 

associated with the details of the signal [14]; these pair 

of filters allow to separate the portions of the high 

frequency signal from those of low frequency [6], in 

this way two signals emerge [12], presented in Fig. 1. 

To avoid getting twice as many samples as the original 

signal, a single point of two is taken and so the final two 

signals will reconstruct the original signal with half the 

samples as the original signal [2], as shown in Fig. 2.  

Currently there are several applications for this 

mathematical analysis tool, as for example in the 

analysis of electroencephalogram signals [15], for the 

separation of ocean waves [16], elimination of noise in  

 
Fig. 1  Scheme of signal decomposition with Mallat tree. 

 

 
Fig. 2  Signal reconstruction scheme. 
 

signals [5], time series [8], noise in radar signals [17], 

seismic movements [18], fractals [19], among others. 

In this paper, it was proposed to analyze the temporal 

series of scale values of the GPS week 1945 obtained 

from the EPEC continuous monitoring station, located 

in the GIS, Remote Sensing and Photogrammetry 

Laboratory of the University of the Armed Forces 

ESPE, which belongs to the SIRGAS network. In these 

time series, due to their nature, they are non-stationary, 

so it will be assumed that they have white noise, which, 

for geodetic calculations that require a lot of data 

accuracy (velocity field, gravity, geoid ripple, direct 

and inverse problem) could cause not so precise results 

[20, 21]. 

The objective of this work was to eliminate the white 

noise present in the time series of scale values of the 

SIRGAS-EPEC station through the use of the discrete 

wavelet transform, Haar type, in order to obtain the 

clean signal of noise, its energy retained and graphs of 

the resulting series. 

2. Methodology 

It was based on the Wavelet type selection, which 

eliminated the white noise of the temporary series. 

White noise is understood as random errors in which 

values of a signal in two different times do not have 

statistical correlation, that is, it has a mean null, 

constant variance, zero covariance and has a normal 

distribution [22].   
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For the treatment of signals, one of the most used in 

this field is the Haar family, which visualizes better the 

DWT, therefore Haar works well on signals with 

abrupt changes [5]. This wavelet separates the signal 

into two matrices defined in Eq. (2):  ݊ܣ ൌ ௌమషభାௌమ√ଶ ݊ܦ			ݕ			 ൌ ௌమషభିௌమ√ଶ       (2) 

By subdividing the signal (A and D) two values are 

obtained (An and Dn) that represent the coefficients of 

the decomposition of the signal [12]. The number of 

times the signal is filtered is given by the level of 

decomposition [3]. It is not recommended to use a very 

low level of decomposition as DB3, because it takes 

certain steps to achieve a good filtering of the signal, 

likewise it is not recommended a very high level, like 

the DB20, because it can eliminate part of the 

information; it is best to consider a level according to 

the nature of the signal to study, so a good level of 

decomposition for this type of series would be a DB5, 

with which an effective noise filtering is achieved [23]. 

The elimination of the noise was done by the 

technique wavelet shrinkage, which consists of 

designating a threshold and excluding the components 

obtained from the Wavelet Transform that are under a 

threshold, or instead, applying the multiplication with a 

weighted value before performing the inverse 

transformation [9]. Because the signal shows 

remarkable changes, Haar is used [5]. The threshold 

method that was used is non-linear, since the noise is in 

each coefficient and is distributed over all the scales 

[24]. The threshold used was soft-threshold (soft 

threshold) in which only the coefficients of the 

transform that are under the value of said threshold 

were eliminated. 

The threshold is calculated using statistics with Eq. 

(3) 

ߜ  ൌ  ሺܰሻ               (3)	ඥ2logߪ

Where N is the data number and σ is the standard 

deviation of the coefficients of the transform, the 

deviation is given by: ߪ ൌ ௗ	|ሺ,ሻ|.ସହ                (4) 

Where C (i, j) is the mean absolute deviation of the 

wavelet coefficients. Once the coefficients that are 

below the established threshold have been eliminated, 

the inverse transformation was carried out following 

the same reasoning in the opposite direction, starting 

with the coefficients and then going through the 

filtering process, which must be correctly considered as 

the number of iterations for the reconstruction of the 

original signal as can be seen in the Fig. 2. 

Specifying the bases of the transformation, we 

proceeded to program in MATLAB for the elimination 

of white noise, for this we worked separately with each 

of the series, first changing the format .xls to .txt, to 

facilitate the importation of the data in the program. We 

placed the type of wavelet with which we will work the 

transform (Haar (“h”)), the number of non-zero 

coefficients that was obtained in the mother wavelet is 

of coefficient 5 (“db5”), due to the discrete nature of 

the signal so it is enough with DB5. Then the level of 

discretization of the transformation was chosen, for this 

case a level of 5 was used. For the filtering process, we 

proceeded to calculate the values of the standard 

deviation of the coefficients of the transformation and 

making it possible to obtain the value of the threshold 

with which the noise was eliminated in the signal. In 

the DWT it is necessary to specify the low pass and 

high pass filters in separate variables, this will facilitate 

the reconstruction of the original series. MATLAB has 

commands in which the process is automated for the 

calculation of inverse transformation, the command 

“waverec” was used in the reconstruction of the 

original signal. The signal sought is the difference 

between the original signal and the inverse of the signal. 

Finally, the results were presented through the graphs 

of the series. 

3. Results 

The graphs of the three time series could be obtained 

through the programming in the MATLAB software in 

which the difference between the series with noise and 

without noise was clearly noticed. In Figs. 3-5, the 
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resulting signal is seen in blue, the original in red and 

the black noise in series 1, 2 and 3 respectively. 

The percentage of retained energy of the three series 

without white noise was obtained with a recovery of 

information of 97.792%, 99.811% and 90.852% in 

time series 1, 2 and 3 respectively. 
 

 
Fig. 3  Graph of time series 1: original (red), without white 
noise (blue) and white noise (black). 

 

 
Fig. 4  Graph of time series 2: original (red), without white 
noise (blue) and white noise (black). 

 

 
Fig. 5  Graph of time series 3: original (red), without white 
noise (blue) and white noise (black). 

4. Conclusions 

The application of wavelets of the Haar type allowed 

to obtain the three series without noise, in the case of 

series 1 and 2, the energy retained was very good, 

while in series 3 it was good, probably because the 

series presented less errors for this reason not only 

noise was eliminated but also information. 

It is important to consider the level of discretization 

to be used, because if a very high level is placed it can 

eliminate information that is not contaminated by noise 

and therefore lose data that harm the result of the 

phenomenon under study, but if a very low level is used, 

a correct filtering of the noise is not achieved. 

The wavelet transform works better in series that 

vary in time and frequency, as in the case of time series, 

unlike the FFT that only works in time, so it is 

advisable to use wavelets for these cases.  

The use of Haar is recommended for the analysis of 

series that present abrupt changes in time due to a 

better analysis of the peaks of the series. 
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