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Performance Dynamics of Hedge Fund Index Investing 
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Abstract: This paper applies ARMA-GARCH-type modeling to shed light on the persistence of performance 

and volatility of daily management hedge fund index returns from April 1, 2003 to August 11, 2014. Time series 

data of four principal hedge fund strategy indices (Equity Hedge, Event Driven, Macro/CTA, Relative Value 

Arbitrage) have peculiar characteristics — that is, serially correlated and volatility clustered returns. In addition, 

their unconditional distributions are heavy-tailed and negatively skewed. Hedge funds are generally free to change 

their trading strategies as market conditions evolve. This flexibility is a distinctive feature that delivers hedge fund 

returns. At the same time, it is possible to say that this feature potentially amplifies market volatility. Therefore, a 

rolling application of ARMA-GARCH modeling can potentially capture the broad shift of performance and 

volatility persistence in the investment strategy, especially in the period surrounding the financial crisis of 

2007-2009. The empirical results show important differences concerning persistence performance between the 

directional and the mispricing strategies. Moreover, the Macro/CTA strategy only indicates a negative news 

impact. Finally, time-varying parameter estimations reveal that Macro/CTA was strongly affected by the isolated 

outliers during the financial crisis. 

Key words: hedge funds; rolling ARMA-GARCH modeling; serial correlation; asymmetric volatility; index 

investing 
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1. Introduction 

Hedge funds are often said to potentially amplify market volatility. They are generally free to change their 

investment positions in various asset markets. Their peculiar performance characteristics tend to generate returns 

less uncorrelated to those of market benchmark returns. After the IT bubble burst in 2001, the unrelenting capital 

inflow of institutional investors to hedge funds accelerated the institutionalization of the hedge fund industry and 

the growth of multi-strategy. Various hedge fund data providers started to offer investable hedge fund indices 

around 2003. The most common structural problems of hedge fund investing are low transparency, low liquidity 

and high costs, while the index-based investing in hedge funds offered transparency, liquidity, and significantly 

lower fee levels. The purpose of these indices is to provide hedge-fund-like returns without investing in hedge 

funds for institutional investors. 

On the other hand, many investors have questioned whether the offered investable hedge fund indices are 

attractive investment products. Many previous studies (Fung & Hsieh, 2006; Hasanhodzic & Lo, 2007; Jaegar, 
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2008; Amenc et al., 2010) have argued that the hedge fund investable indices (or hedge fund replication products) 

substantially underperformed their respective style benchmarks. In fact, the average monthly returns of the HFRX 

(investable) for four principal strategy indices have slightly out-performed those of the corresponding HFRI 

(benchmark indices) for all strategies from its inception in January 1998 until December 2002, whereas the HFRX 

monthly returns significantly under-performed those of the corresponding HFRI indices for all strategies during 

the period from January 2003 to January 2016.1 It seems that the underperformance of the investable indices over 

the benchmark indices has accompanied the rapid growth of asset allocation of institutional investors to hedge 

funds. What is a fair reward for the risks taken by the investor? How is an optimally diversified portfolio 

involving hedge fund investing constructed? Before answering to these fundamental questions, it is necessary to 

analyze the performance characteristics of the investable hedge fund indices.  

The purpose of this paper is to investigate the performance dynamics of the investable hedge fund indices, 

especially focusing on their persistence of volatility. I would like to construct an appropriate model for their 

volatility-clustered returns in order to reveal long memory and leverage effects, and illustrate the dynamic impact 

on volatility during the financial crisis. Many studies have argued that nonlinear processes model the volatility 

behavior of hedge fund strategies better (Füss et al., 2007; Blazsek S. & A. Downarowicz, 2011; Del Brio et al., 

2014; Teulon et al., 2014). My primary empirical tool is GARCH-type model with which is possible to combine 

together more than one of the time series models, such as ARMA models. Such “hybrid” models can 

simultaneously account for time-varying volatility, serial correlation, skewness and kurtosis in hedge fund strategy 

index returns. Moreover, it is important to note that accurate appraisal of hedge fund strategy performance must 

recognize the freedom with which managers change their trading tactics as market conditions evolve. A rolling 

application of ARMA-GARCH modeling can potentially capture the broad shift of performance and volatility 

persistence in the investment strategy, especially in the period surrounding the financial crisis of 2007-2009. This 

article extends Munechika (2015) by applying a rolling regression technique to ARMA-GARCH modeling.  

The remainder of this paper is organized as follows. Section 2 describes statistical properties of different 

hedge fund strategy index returns. Section 3 gives a brief overview of ARMA-GARCH-type modeling employed, 

and the motivation of applying a rolling regression to the models is introduced. Section 4 reports the empirical 

results. Some concluding remarks are offered in the final section. 

2. Data 

The author’s analysis relies on the HFRX Global Hedge Fund Index of Hedge Fund Research Inc. (hereafter 

HFR). HFRX Global Hedge Fund Index is designed to be representative of the overall composition of the hedge 

fund universe and to be investable, as well as to offer full transparency, daily pricing and consistent fund selection. 

It is comprised of all eligible hedge fund strategies falling within four principal strategies. In this paper, four 

principal strategies indices (Equity Hedge, Event Driven, Macro/CTA, and Relative Arbitrage Value) are 

investigated.2 Data are daily and span the period March 31, 2003 to August 11, 2014.  

                                                        
1 According to the author’s calculations, the average monthly returns of the HFRI benchmark indices for Equity Hedge, Event 
Driven, Macro/CTA and Relative Value Arbitrage were under-performed those of the HFRX investable indices with -0.330%, 
-0.017%, -0.555% and -0.028% during the period from January 1998 until December 2002, respectively. On the other hand, those of 
the HFRI indices were out-performed those of the HFRX indices with 0.354%, 0.336%, 0.293% and 0.381% during the period from 
January 2003 until January 2016, respectively.   
2 HFR (2014), http://www.hedgefundresearch.com, for descriptions of each investment strategy index.  
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Although there are several types of categories for hedge fund strategies, it is possible to say that the hedge 

fund strategies are roughly classified into two trading styles: directional and mispricing. Agawal and Naik (2000) 

classify hedge fund strategies into two categories (directional and non-directional strategies) since these two 

categories exhibit very different risk-return trade-offs. The directional strategy is a strategy that generates returns 

by taking bets on market directional movements, while the non-directional (i.e., mispricing) strategy is a strategy 

that funds take relative values bets. The directional strategy funds are typically characterized by significant market 

exposures. The non-directional strategy is designed to exploit short-term market inefficiencies. The aim is to find 

discrepancies in prices and it converges price movements in the market. In HFRX Global Hedge Fund Strategy 

Index, Macro/CTA is classified as a directional strategy while Event Driven and Relative Value Arbitrage are 

classified as non-directional (i.e., mispricing) strategies, and they neutralize general market trends. However, 

Equity Hedge in the HFRX strategy index includes not only Equity Market Neutral, classified as a non-directional 

strategy but also Quantitative Directional and Short Bias, which are classified as directional strategies in the 

sub-strategy index. Consequently, Equity Hedge (equity-related strategy) has mixed characteristics of directional 

and non-directional strategies. 

An overview of the return and risk characteristics of four hedge fund index returns are shown in Table 1. 

Although the performance of the particular strategies in the observed period is very heterogeneous, there are 

common features. First, all hedge fund index returns indicate that the unconditional probability distributions of 

their returns are leptokurtic. Second, the return distributions for all strategies are negatively skewed. Specifically, 

non-directional strategies such as Event-Driven and Relative Value Arbitrage have relatively large negative 

skewness and high excess kurtosis. As is evidenced by their significant JB-test statistics, all hedge fund index 

returns are not normally distributed. Table 2 reports the estimated autocorrelation coefficients of the hedge fund 

index returns for lag 1 to 20 together with the Ljung-Box (LB) statistics with five, ten and twenty autocorrelations. 

Although the returns of four indices excepting for Relative Value Arbitrage do not show high autocorrelation 

coefficients, some of them are still positively autocorrelated, and are highly significant at the 95% confidence 

level. One of the main implications of positive autocorrelation is that the true standard deviation is underestimated. 

Consequently, the risk-adjusted return, such as the Sharpe ratio, is biased upward. Figure 1 displays the full 

sample series of four daily index returns. This shows that the variance in the returns changes over time. This 

property is called volatility clustering. 
 

Table 1  Summary Statistics of Hedge Fund Index Returns 

April 1, 2003 to August 11, 2014 

Daily Return Mean STD Skewness Kurtosis Jarque-Bera  No. Obs. 

HFRX Global Hedge Fund Index        

  Equity Hedge 0.0052  0.4066  -0.8442  8.6599  4162.95  *** 2864 

  Event Driven 0.0171  0.2959  -1.1558  15.0343  17919.96  *** 2864 

  Macro/CTA 0.0039  0.4081  -1.0193  10.5510  7300.02  *** 2864 

  Relative Value Arbitrage 0.0065  0.2712  -1.7268  41.7891  180971.40  *** 2864 

Notes: The Jarque-Bera normality test is asymptotically distributed as a central 2χ  with 2 degrees of freedom under the null 
hypothesis, with 10%, 5% and 1% critical values. *, **, *** denote significance at the 10%, 5%, and 1% levels, respectively.  
Source: Author’s calculations, based on data from Hedge Fund Research. 
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Table 2  Autocorrelations 

ACF Equity Hedge Event Driven Macro/CTA Relative Value Arbitrage

Lag(1) 0.154*** 0.108*** 0.104*** 0.195*** 

Lag(2) 0.027   0.060*** 0.031*   0.107*** 

Lag(3) 0.031*  0.078*** 0.034*   0.124*** 

Lag(4) 0.013   0.016   0.040**  0.125*** 

Lag(5) -0.014   0.066*** -0.004   0.094*** 

Lag(10) 0.050*** 0.032   0.031*   0.094*** 

Lag(15) 0.006   0.024   -0.002   0.140*** 

Lag(20) 0.018   0.024   -0.013   0.074*** 

LB-Q(5) 73.658*** 74.326*** 41.358*** 255.97*** 

LB-Q(10) 85.902*** 89.994*** 47.886*** 380.05*** 

LB-Q(20) 115.3*** 135.61*** 62.409*** 771.68*** 

Note: The significance tests for the autocorrelation coefficients can be constructed by a non-rejection region for an estimated 
autocorrelation coefficient to determine whether it is significantly different from zero. Under the assumption that returns are normally 
distributed, confidence intervals for the correlations can be constructed. For a sample size of T, a correlation coefficient is defined as 

statistically significant at the 10%, 5% and 1% levels would be given by േ1.65/√ܶ, േ1.96/√ܶ and േ2.58/√ܶ, respectively. *, ** 
and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
Source: Author’s calculations, based on data from Hedge Fund Research. 
 

 
Figure 1  Four Hedge Fund Index Returns 

 

To sum up, time-series analyses of hedge fund index returns have some of the common features: 

autocorrelation, time-varying variance (volatility clustering), and heavy-tailed, negatively skewed distribution. 

Volatility clustering implies that volatility shock today will influence the expectation of volatility many periods in 

the future. This means persistence of volatility to the shocks. This phenomenon requires researchers to describe 

returns and volatility that are nonlinear. It seems to be appropriate to combine an ARMA model for the level of the 

returns with a GARCH model for the variance for modeling these data. The combined models can capture the 

level of persistence in performance and volatility. 

3. Model and Methodology 

My central challenge is to examine whether and to what extent hedge fund indices in different strategies react 

similarly or differently to the period surrounding the financial crisis of 2007-2009. In order to estimate the 
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persistence of performance and volatility of hedge fund strategy indices, Munechika (2015) has employed 

ARMA-GARCH-type models. However, hedge funds tend to shift their investment positions and trading tactics in 

response to changing market conditions. To account for frequent shifts in strategy, I apply rolling fixed-window 

regressions to ARMA-GARCH models, which yields time-varying parameter estimates. This section reviews my 

empirical methodology. 

First, I will establish notation. Let ݌௧ be the hedge fund strategy index value at time ݐ and ݎ௧ ൌ logሺ݌௧/݌௧ିଵሻ ∗ 100 be the continuous compounded return on the index over the period t-1 to ݐ. In most financial time 

series, prices are non-stationary while the returns are stationary. It is confirmed that hedge fund index returns ݎ௧ 
of four investment strategies come from a stationary process based on the unit root tests. 

In general, the return on any asset ݎ௧ can be divided into two parts: the expected parts of the return Eሾݎ௧ሿ 
and the unexpected part of the return ε௧. The expected parts of the return is what can be predicted using the 

knowledge from the past, which is denoted by Ω௧ିଵ the information set of all available information up to and 

including time t-1. This expected part of the return is the conditional mean Eሾݎ௧|Ω௧ିଵሿ, which is the mean at time t 

conditional on the information set taken by the series in previous periods and defined as 

௧ݎ        ൌ Eሾݎ௧|Ω௧ିଵሿ ൅  ௧.                          (1)ߝ

௧ݎ           ൌ μ௧ ൅  ௧.                           (2)ߝ

Where ߝ௧, is known as the disturbance, or error term. The conditional mean is defined by 

௧ߤ          ൌ Eሾݎ௧|Ω௧ିଵሿ.                           (3) 

According to equation (1), the forecast error is considered as 

௧ߝ              ൌ ௧ݎ െ Eሾݎ௧|Ω௧ିଵሿ ൌ ௧ݎ െ  ௧.                      (4)ߤ

The process ߝ௧ corresponds to the unpredictable movements in ݎ௧, which is also called the innovation 

process.  

In the context of financial analysis, the errors ߝ௧ are often considered as “shocks” or “news” since they 

represent unexpected factors. Then, equation (1) implies that an observed time series ݎ௧  is related to an 

underlying sequence of shocks ߝ௧. Clearly the distribution of ߝ௧ is central in this definition. Sometime a model 

will assume that the error term ߝ௧ has the following properties: 

     Eሾߝ௧ሿ ൌ 0.                            (5) 

     Eሾε௧ଶሿ ൌ  ଶ.                          (6)ߪ

     Eሾߝ௧ߝ௦ሿ ൌ ݏ	ݎ݋݂											0 ്  (7)                 .ݐ

The disturbance term is a random variable that has probabilistic properties with zero mean, constant variance 

(i.e., homoskedasiticity) and is serially uncorrelated, also known as a white noise error term. 

Next, the conditional variance is naturally defined as ݄௧ ൌ ௧ݎሾሺܧ െ ௧ሻଶ|Ω௧ିଵሿߤ ൌ ௧ଶ|Ω௧ିଵሿߝሾܧ ൌ  ௧ଶ.                (8)ߪ

The conditional variance can estimate the variance of a series at a particular point in time t. The conditional 

variance is ߪ௧ଶ ൌ varሺݎ௧|Ω௧ିଵሻ, where Ω௧ିଵ ൌ ൛ݎ௧ିଵ, ,௧ିଶݎ ⋯ ൟ is the available information set at time t-1. 

3.1 ARMA-GARCH Modeling: Combined Models for Level and Variance 

In this paper, an ARMA model for the level ݎ௧ and a GARCH model for the variance of the innovations ߝ௧ ൌ ௧ݎ െ Eሾݎ௧|R௧ିଵሿ are combined. To account for the serial correlation in the hedge fund index returns, the mean 

equation is modeled by an ARMA process: 

௧ݎ      ൌ μ ൅ ∑ ∅௜ｐ௜ୀଵ ௧ି௣ݎ ൅ ௧ߝ ൅ ௧ߝ ∑ ௝௤௝ୀଵߠ  ௧ି௝              (9)ߝ
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Equation (9) states that the current value of returns series ݎ௧ depends linearly on its own pervious values 

plus a combination of current and previous values of a white noise error terms. 

Figure 1 shows that the variance in the returns changes over time. It is a sign of positive serial correlation in 

squared returns. If the variance depends on the past, the series is described as conditionally heteroscedastic. In 

addition, if this dependence on the past can be serially correlated, which can be expressed by autoregression, then 

this gives the so-called ARCH (autoregressive conditional heteroscedasticity) process. To capture this serial 

correlation of volatility, Engle (1982) developed the autoregressive conditional heteroscedasticity (ARCH) model. 

The key idea of the ARCH model is that the variance of ε at time t, that is, ߪ௧ଶ depends on the size of the 

squared error term at the previous time t-1, that is, on ߝ௧ିଵଶ . For instance, the ARCH (1) model is expressed as 

௧ଶߪ         ൌ ଴ߙ ൅ ௧ିଵଶߝଵߙ .                      (10) 

Where the conditional variance depends on only one lagged squared error. The conditions ߙ଴ ൐ 0 and ߙଵ ൐ 0 are imposed since variances ߪ௧ଶ is non-negative. In the case of ߙଵ ൐ 0, the conditional variances are 

positively related, as ߪ௧ଶ is larger for larger values of the previous innovation ߝ௧ିଵ. In general, an ARCH(q) 

model with q lags is given by 

௧ଶߪ       ൌ ଴ߙ ൅ ௧ିଵଶߝଵߙ ൅ ௧ିଶଶߝଶߙ ⋯൅ ௧ି௤ଶߝ௤ߙ .              (11) 

The ARCH(q) process follows an AR(q) process in the squared innovations ߝ௧ଶ.  

One of the shortcomings of an ARCH(q) model is that there are q+1 parameters to estimate. The accuracy of 

model estimation might be lost as q becomes a large number. The generalized ARCH (or GARCH) model by 

Bollerslev (1986) is an alternative method for capturing long-lagged effects with a highly parsimonious lag shape 

by using ARMA modeling for the series ߝ௧ଶ. For instance, the GARCH(1,1) model is defined as 

௧ଶߪ	        ൌ ω ൅ ௧ିଵଶߝଵߙ ൅ ௧ିଵଶߪଵߚ                      (12) 

Where ω ൌ ሺߙ଴ െ ଴ሻߙଵߚ . As variances ߪ௧ଶ  is non-negative, all three parameters 	ω ଵߙ , ଵߚ ,  are 

non-negative. It is well known that the GARCH(1,1) model has been empirically successful in the vast majority of 

cases. 

An ARMA(1,1)-GARCH (1,1) model is given by the conditional mean equation 

௧ݎ     ൌ μ ൅ ∅ଵݎ௧ିଵ ൅ ௧ߝ ൅  ௧ିଵ for the level,             (13)ߝଵߠ

Where ߝ௧|Ω௧ିଵ ~ܰሺ0,  .௧ଶሻ with the conditional variance equation given by equation (12)ߪ

௧ଶߪ      ൌ ω ൅ ௧ିଵଶߝଵߙ ൅ ௧ିଵଶߪଵߚ .                    (12) 

The conditional variance equation (12) states that the current fitted variance, ߪ௧ଶ is interpreted as a weighted 

function of a long-term average value (dependent on	ω) and information about volatility during the previous 

period (ߙଵߝ௧ିଵଶ ) and fitted variance from the model during the previous period (ߚଵߪ௧ିଵଶ 	). Large coefficient α1 

means that volatility reacts quite intensely to market movements of the previous period (i.e., the ARCH term is a 

reaction coefficient). Large coefficient β1 indicates that shocks to conditional variance in the previous period are 

persistent and take a long time to die out, so volatility is persistent (i.e., the GARCH term is a persistence 

coefficient). If α1 is relatively high and β1 is relatively low then volatility tend to be more “spiky” (large reaction 

and low persistence). The sum of	α and β is referred to as the persistence of the conditional variance process.3 

This GARCH(1,1) model is a special case of the more general GARCH(p,q) model, where p is the number of 

lagged h terms and q is the number of lagged ε2 terms. It is worth noting that GARCH(p,q) modeling of the 

                                                        
3 Bauwens et al. (2015) state that, for financial return series, empirical estimates of α and β are often in the ranges [0.02, 0.25] and 
[0.75, 0.98], respectively, with α often in the lower part of the interval and β in the upper part for daily series, p. 5. 
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conditional variance is analogous to ARMA(p,q) modeling of the conditional mean. 

3.2 Asymmetric GARCH Model 

It is well known that positive and negative news are often treated asymmetrically in financial markets. It has 

been argued that negative news about stock returns is likely to cause volatility to rise by more than positive news 

of the same magnitudes. Such asymmetries are called leverage effects.  

The threshold ARCH model (i.e., T-ARCH) is a simple extension of GARCH with an additional term added 

to account for possible asymmetries. The T-GARCH model is also referred to the GJR model, named after the 

authors Glosten, Jagannathan and Runkle (1993). In the GJR version of the model, the specification of the 

conditional variance is 

௧ଶߪ       ൌ ω ൅ ௧ିଵଶߝଵߙ ൅ ௧ିଵଶߝ௧ିଵ݀ߛ ൅ ௧ିଵଶߪଵߚ .             (14) 

          ݀௧ ൌ ൜1								ߝ௧ ൏ 0	ሺܾܽ݀	݊݁ݏݓሻ0							ߝ௧ ൒ 0	ሺ݃݀݋݋	(15)                 ݏݓ݁݊ 

Where γ is known as the asymmetry term. When γ is 0, the GJR model converges to the standard GARCH 

form. On the other hand, when the shock is positive (i.e., good news) the effect on volatility is ߙଵ but when the 

news is negative (i.e., bad news) the effect on volatility is α1+γ. Thus, so long as γ is significant and positive, 

negative shocks have a larger effect on ߪ௧ଶ than positive shocks. This phenomenon is well known as the leverage 

effect. It is important to clarify the difference between asymmetry and leverage. Asymmetry is a feature that 

positive and negative shocks of equal magnitudes have different impacts on volatility. The leverage effect means 

that negative shocks increase volatility while positive shocks decrease volatility (Caporin & McAleer, 2012).  

3.3 Rolling Regression 

A rolling window analysis is often used to examine whether the coefficients of the parameters are 

time-invariant. In fact, the hedge fund managers can introduce different strategies into the portfolio mix to 

diversify their income stream. This flexibility to change trading strategies is the distinctive feature that delivers 

hedge fund returns. These strategy shifts can be seen in response to changing market conditions, especially the 

structural shifts in the way diversified portfolios of hedge funds tend to correspond to major extreme market 

events such as the financial crisis of 2007-2009. However, the strategy classification of hedge funds in the strategy 

index rarely changes to reflect subsequent shifts in the fund’s investment style or strategy blending (McGuire et al., 

2005). Tracking the time-varying parameter can help in identifying changes in trading strategies in the index. To 

this end, I use a technique of rolling regression that is basically running multiple regressions with different 

overlapping window of values at a time. A rolling application of ARMA-GARCH modeling can potentially 

capture broad shift of volatility persistence in investment strategy. The estimated coefficients from these rolling 

regressions enable us to inspect the time-varying properties of the sensitivity to market conditions through time. 

The estimation of time-varying sensitivity parameters is carried out using rolling regressions of a 3-year window 

on daily returns, in which 756 observations are included. As the data window is rolled forward day by day, the 

parameter estimates were recorded. 

In this paper, I use a three-stage estimation of rolling ARMA-GARCH models. In the first stage, the ARMA 

method is used to select the appropriate AR and MA orders for modeling the serial correlation in the lagged 

dependent variable (i.e., index return) and in the disturbance. The procedures follow the so-called Box-Jenkins 

approach: identification, estimation and diagnostic checking. The appropriate model orders are selected by using 

the Schwarz’s (Bayesian) information criterion. In the second stage, the conditional mean equations of the 

GARCH(1,1) and GJR(1,1) models are estimated by using the specified AR and MA orders of ARMA models 
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from the first stage.4 The third stage applies the method of rolling regression to the estimated ARMA-GARCH 

models. The estimated coefficients from these rolling regressions reveal the time-varying properties of the 

sensitivity to each parameter through time. 

4. Empirical Results 

4.1 Persistence and Asymmetric Impact of the Shock on Volatility 

The ARMA-GARCH & GJR results are given in Table 3. The conditional variance equation is specified in a 

GARCH(1,1) model, whose function consists of three terms: a constant term ω, the ARCH term α1 and the 

GARCH term ߚଵ. The parameter restrictions are fulfilled for all hedge fund indices. The coefficients on both the 

lagged squared residual and lagged conditional variance terms in the conditional variance equation are highly 

statistically significant for all hedge fund index returns. The persistence of the volatility is measured as the sum of ߙො and ߚመ . The results indicate that the volatility of hedge fund returns is quite persistent. Especially, the sum of ߙො 
and ߚመ  for Macro/CTA and Relative Value Arbitrage is very close to unity (approximately 0.99). This implies that 

shocks to the conditional variance will be highly persistent and a large positive and a large negative return will 

lead future forecasts of the variance to be high for a subsequent period. A volatility of half-life (i.e., the half-life 

period: HLP) takes 22.757 days for the Equity Hedge and 29.921 days for the Event Driven, whereby the HLP of 

69.668 and 147.131 days for Macro/CTA and Relative Value Arbitrage are much higher.5 Therefore, the return 

volatilities of four hedge fund indices have quite long memories. In addition, the sum of ߙො and ߚመ  is significantly 

less than one, which implies the volatility process does return to its mean (Engle & Patton, 2001), in other words, 

it exhibits so-called mean reverting behavior. 

The ARCH LM(1) test determines whether any ARCH effects remain in the residuals. The null hypothesis 

that no ARCH effects remain in the residuals is not rejected for all hedge fund indices in ARMA-GARCH(1,1) 

modeling. The ARCH-LM(1) tests confirm the null hypothesis of no first-order ARCH effects in the squared 

residuals of the models for four hedge fund index return-series. This result means that the ARMA-GARCH 

modeling takes the heteroscedasticity and the changing unconditional and conditional variance in the return-series 

into account.   

Next, an examination of asymmetric effects on the conditional variance is conducted through assessment of 

an ARMA-GJR(1,1) model. The coefficient γො in Table 3 is positive for Equity Hedge, Event Driven, and Relative 

Value Arbitrage, and statistically significant. The coefficient α implies an impact of good news, while the sum of 

the αෝ ൅ γො implies an impact of bad news. There is the largest leverage effect for Equity Hedge since the 

coefficient γො is 0.1723. However, the coefficient γො is negative for Macro/CTA, provided that αෝ ൅ γො is 0.0295 ൒ 0. The specification of the GJR model is still admissible. All hedge fund index return series seem to prefer the 

GJR model to the GARCH model since all values of SIC decrease and ones of log likelihood function increase in 

the ARMA-GJR(1,1) modeling from the ARMA-GARCH(1,1) modeling. However, the Jarque-Berra statistics of 

ARMA-GARCH and ARMA-GJR estimations suggest that skewness and kurotosis in the standardized residuals 

are not completely eliminated. Munechika (2015) states that the distributions of the standardized residuals were 

close to Student-t distributions. It implies that the extreme downside risk cannot be captured by these models. 
 

                                                        
4 See Munechika (2015) for AMRA-GARCH modeling and diagnostic checking in more details. 
5 Füss et al. (2007) compute the half-life period (HLP) of a shock on the process, that is, the length until half of the volatility 
generated by a price innovation as HLP ൌ log	ሺ0.5ሻ ሾlog	ሺߙො⁄ ൅  .መሻሿߚ
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Table 3  ARMA-GARCH & GJR Modeling 

 ARMA-GARCH(1,1) modeling ARMA-GJR(1,1) modeling 

 
Equity 
Hedge 

Event 
Driven 

Macro 
/CTA 

Relative Value 
Arbitrage 

Equity 
Hedge 

Event 
Driven 

Macro 
/CTA 

Relative Value 
Arbitrage 

 AR(1) ARMA(1,2) AR(1) ARMA(1,2) AR(1) ARMA(1,2) AR(1) ARMA(1,2) 

Mean equation   ̂0.0275  0.0162 ***0.0239   0.0007- ***0.0319 ***0.0288 ߤ*** 0.0051   0.0156*  

 (0.0071)  (0.0055)  (0.0067)  (0.0058)  (0.0076) (0.0054)  (0.0064)  (0.0081)  ∅෡ଵ 0.1791*** 0.3063   0.0699*** 0.9574*** 0.1878*** 0.3809*  0.0551*** 0.9715*** 

 ***෠ଵ ― -0.2034   ― -0.9009*** ― -0.2745   -0.9109ߠ  (0.0106)  (0.0200)  (0.2210) (0.0197)  (0.0131)  (0.0209)  (0.2503)  (0.0198) 

   ෠ଶ ― 0.0390   ― -0.0107   ― 0.0337   -0.0080ߠ  (0.0246)   (0.2219)   (0.0249)   (0.2510)  

  (0.0366)   (0.0221)   (0.0351)   (0.0224)  

Variance equation   ෝ߱ 0.0045*** 0.0018*** 0.0020*** 0.0006*** 0.0077*** 0.0027*** 0.0011**  0.0006***  

***ොଵ 0.1080*** 0.0998*** 0.0851*** 0.1241*** 0.0119  0.0448ߙ  (0.0002)  (0.0005)  (0.0006) (0.0014)  (0.0002)  (0.0005)  (0.0004)  (0.0010)  0.0961*** 0.0737***  

***ො ― ― ― ― 0.1723ߛ  (0.0263)  (0.0147)  (0.0168) (0.0193)  (0.0224)  (0.0112)  (0.0160)  (0.0187)  0.0925*** -0.0666*** 0.0861** 

ොߙ  (0.0421)  (0.0160)  (0.0263) (0.0284)      ൅   ො ― ― ― ― 0.1842  0.1373  0.0295   0.1598ߛ

***መଵ 0.8620*** 0.8773*** 0.9051*** 0.8712*** 0.8392ߚ          0.8668*** 0.9344*** 0.8778*** 

ොଵߙ  (0.0153)  (0.0123)  (0.0162) (0.0182)  (0.0187)  (0.0122)  (0.0151)  (0.0183)  ൅        መଵ 0.9700   0.9771   0.9901   0.9953ߚ

HLP 22.757 29.921 69.668 147.131     

SIC 0.7472 0.0422 0.7750 -0.5957  0.7266 0.0367  0.7672 -0.6023  

LogL -1049.69 -32.5273 -1089.5 880.6709 -1016.22 -20.6415 -1074.31 894.0463 

ARCH effect: ̂ߝଶ   

ARCH LM(1) test 1.9547 0.7942 0.0003 0.4168 3.9839** 1.1978 2.3625  1.4231 

Standarized Residuals: ̂ݖ௧	 ൌ     	ො௧ߪ/	௧̂ߝ
Mean -0.0429 -0.0271  0.0178 -0.0275 -0.0126 -0.0105  0.0000 -0.0051  

 Std. Dev. 0.9985  0.9993  0.9996 0.9990  0.9995 0.9998  0.9997  0.9993  

 Skewness -0.4978  -0.4286  -0.5018 -0.1246  -0.4515 -0.4309  -0.4624  -0.0361  

 Kurtosis 4.8586  5.1456  6.5193 5.8927  4.9037 5.2338  5.8252  6.1179  

 Jarque-Bera 530.33*** 636.844*** 1597.628*** 1005.583*** 529.625*** 683.873*** 1054.157*** 1160.280***  

Ljung-Box statistic Ho: no-autocorrelation  ̂ݖ௧	: Q(12) 6.968   20.180** 3.754 12.672  7.144  19.107** 4.004  8.516  ̂ݖ௧ଶ: Q(12) 19.385**  16.435* 3.118 16.047* 15.456  16.182** 11.550  14.330 

Notes: Based on daily continuously compounded returns for 2864 observations 04/01/2003 to 08/11/2014; standard errors are 
presented in parenthesis; The statistical significance is determined by using Bollerslev-Wooldridge robust standard errors; ***, **, * 
denote significance at 99%, 95% and 90% confidence levels, respectively.   
 

4.2 Volatility Dynamics and the Financial Crisis 

Rolling ARMA-GARCH modeling is conducted using a three-year rolling window on daily data over the full 

sample period. Figure 2 summarizes the rolling ω coefficients of four strategies. The vertical axis represents 

rolling ω coefficients, that is, the long-term volatility and the horizontal axis represents the starting date of the 

sample period. Panel (a), (b) and (c) plot the rolling GARCH omegas, the rolling GJR omegas excluding 
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Macro/CTA) and the rolling GJR omegas including Macro/CTA, respectively. The shaded area represents the data 

period including the financial crisis. In panel (a), the long-term level of volatility had been slightly drifting 

downwards prior to the financial crisis, with the possible exception of Macro/CTA. Moreover, the difference of 

the rolling GJR omegas across strategies decreased gradually during the period. The convergence in long-term 

volatility is generally consistent with the growth of the industry that has led to greater institutionalization of the 

hedge fund sector.6 The GARCH ω constant for Equity Hedge increased during the financial crisis and declined 

significantly thereafter. That of Macro/CTA suddenly jumped and fluctuated widely during the financial crisis. It 

is possible to say that the financial crisis of 2007-2009 strongly affected the directional strategies. On the contrary, 

the GARCHω constant for Event Driven and Relative Value Arbitrage were relatively stable for the whole sample 

period. Panels (b) and (c) show the estimates of rolling GJR model. The development of the rolling GJR ω 

coefficients for Equity Hedge, Event Driven and Relative Value Arbitrage were not so different from the results of 

rolling GARCH model. However, the rolling GJR ω coefficient revealed isolated outliers of Macro/CTA during 

the latter part of the financial crisis. 
 

 
Figure 2  Long-term Volatility Levels 

 

                                                        
6 McGuire and Tsatsaronis (2008) states that hedge funds have been increasingly forced to adopt more stable investment profiles, 
and aim to deliver more predictable returns, even at the expense of the absolute level of those returns, p. 9.  
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Figure 3  Reaction Coefficients 

 

Figure 3 presents the reaction coefficients α for the different fund styles based on the rolling regressions. In 

panel (a), the variation in the rolling GARCH α follows a similar pattern for Equity Hedge and Event Driven 

during the period of 2003 and 2008. Following the financial crisis, their estimated rolling GARCH α increased 

gradually. This pattern is particularly clear for Relative Value Arbitrage, and the estimated rolling GARCH α 

showed larger fluctuations during the crises, after which appeared a quite noisy pattern. Macro/CTA displayed the 

largest fluctuation among four strategies during the period of the early part of the financial crisis, subsequently the 

reaction coefficient diminished greatly. Interestingly, the rolling GJR α for Event Driven and Equity Hedge in 

panel (b) displays quite different patterns from panel (a). The estimated rolling GJR α coefficients for the two 

strategies frequently indicate the negative values, over the sample period, especially during the financial crisis. 

The negative values of the estimated coefficients are not allowed under the non-negativity conditions of the 

GARCH and GJR models. In Figure 4, the pattern of the rolling GARCH and GJR β (persistence) coefficients for 

all strategies follows the almost reverse movements to ones of the rolling GARCH and GJR α. In particular, the 

rolling GJR β coefficient for Macro/CTA displays the isolated outliers in the latter part of the financial crisis. 

Figure 5 represents the rolling GJR γ coefficient, which exhibits asymmetric impact to the shocks. Quite 

interestingly, Macro/CTA showed a negative asymmetric impact between 2005-2008. 

Over all, these results allow for some tentative but broad conclusions. First, hedge fund strategies that 

supposedly follow different investment styles appear to have, to some degree, similar volatility movements. The 

rolling GARCH and GJR ω and α coefficients considerably increased during the financial crisis. The similarity 

in the pattern of parameter shifts of the equity-related funds (Equity Hedge), excepting for Macro/CTA, and the 

non-directonal funds (Event Driven and Relative Value Arbitrage) over the sample period is particularly striking. 

Second, the volatility characteristic of Macro/CTA was extremely dynamic which indicated over-reactive, low 
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persistence, and the negative asymmetric effect of volatility. The GJR model is still admissivle for Macro/CTA 

because the sum of α and γ is larger than zero. The strategy of Macro/CTA is called “trend following”. The 

strategy tends to apply mechanical rules, such as moving averages of asset prices, to capture “trends” in markets. 

Fung and Hsieh (2007) point out that, while it may be easy to identify a trend ex-post, it is difficult to do so 

ex-ante. 
 

 
Figure 4  Persistence Coefficients 

 

 
Figure 5  Asymmetric Impact 

 

To sum up, rolling regressions have revealed time-varying characteristic of parameter etimations for hedge 

fund strategies. The results have demonstrated that the parameter estimation has been strongly affected by the 

financial crisis of 2007-2009, especially for Macro/CTA.  
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5. Concluding Remarks 

In this paper, a rolling application of ARMA-GARCH type modeling has been employed to investigate the 

persistence and volatility of hedge fund index returns, and compared with each other. The empirical results shows 

significant differences concerning performance persistence, and asymmeric impacts of the shocks on volatility 

among the strategies concerned.  

First, as for model selection, the ARMA-GJR(1,1) models were preferred to the ARMA-GARCH(1,1) 

models based on the information criterion and log likelihood function for all hedge fund strategy index returns. 

However, the distributions of the standardized residuals of the ARMA-GARCH and GJR models for all strategies 

exhibit leptokurutosis. These characteristics have significant consequences on downside risk evaluation in the case 

of VaR measurement including time-varying conditional volatility. Second, through the ARMA modeling for the 

conditional mean equation, the estimated AR(1) term of Relative Value Arbitrage exhibits high serially correlation, 

whereas Equity Hedge (equity-based strategy) and Macro/CTA (trend following strategy) show relatively low 

serial correlation. It implies that illiquid hedge fund strategies tend to exhibit high levels of performance 

persistence, while more liquid strategies have low levels of performance persistence. Third, the ARMA-GJR(1,1) 

models reveal that Equity Hedge, Event Driven, and Relative Value Arbitrage have the leverage effect and only 

Macro/CTA shows the negative asymmetric impact of the shock on the volatility. Moreover, a rolling regression 

revealed time-varying characteristics of parameter estimation for shifts in the volatility process. In particular, the 

volatility characteristic of Macro/CTA was extremely ‘spiky’ and negative asymmetric impact during the period of 

the financial crisis, in which the shifts in the volatility process to the market regime might have occurred. 

Macro/CTA exhibits striking differences in time-varying parameter estimations of ARMA-GJR modeling among 

hedge fund strategies. The outliers might have an excessive impact on its parameter estimates, and thus, 

potentially amplify market volatility. 
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