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Abstract: Cumulative empirical evidence show that distributional information has very important impact on 

investor’s decision making, since the distributional information of asset returns that represents risk and 

opportunity. In addition, empirical evidence in finance has documented that stock return distributions are not 

normal. In this paper, we argue that in addition to the left tail information, the right tail distributional information 

of returns can provide very valuable information to investors and portfolio managers, and the right tail 

information should be used together with other (say, left tail) information in analyzing financial markets. We 

consider measures of the right tail distribution. Quantile regression estimators for the right tail measures are 

developed. The proposed estimation method may also be applied to estimation of other measures in finance. 
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1. Introduction 

The distribution or conditional distribution of financial and economic variables is important to investors and 

decision makers. A widely used model that emphasizes the importance of distributional information, in addition to 

the mean and conditional mean, is the ARCH/GARCH type model where the role of conditional variance is 

emphasized. 

At present, it is well-known that both the mean and the variance of financial variables can provide important 

information about financial market. For this reason, most existing models in finance focus on information of the 

mean and variance (or conditional mean and conditional variance). Under normality assumption, the distribution 

of return is completely determined by the mean and variance. Using variance as a measure for risk, Markowitz 

(1952) proposed the mean-variance efficient portfolio which minimizes variance for a given expected return. 

Despite the large amount of applications of mean-variance analysis, there is a large amount of empirical 

studies in finance showing that stock returns are not normally distributed. In addition, it is argued that variance is 

not a good measure for risk because it is a symmetric measure that penalizes gains and losses in the same way. 

Although the asset pricing theory of incomplete markets predicts that investors should command higher expected 

return for bearing higher risks, empirical studies have yielded mixed results on idiosyncratic volatility and there 
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has been a lively debate on the role of idiosyncratic volatility in determining cross-sectional stock returns. 

Different investors have different preferences on financial securities with different distributions, even when 

the means and variances are the same across these securities. From a risk management point of view, researchers 

find that the information contained in the left tail distribution is important in risk management and portfolio 

construction. Left tail measures such as Expected Shortfall and Value-at-Risk are now widely used in finance 

applications (e.g., Artzner et al., 1999). Recently, Xiao (2014) argues that, in addition to the left tail information, 

the right tail of return distribution also contains important information that affects investors’ behavior in financial 

markets. Investors not only look at the left tail distribution of returns to control risk, but also consider the right tail 

distributional information for opportunity — just like buying insurance as well as lotteries. People try to control 

risk by purchasing insurance, and they also try to capture opportunities of making a fortune in buying lotteries — 

although different people may have different attitudes over risk and opportunity, they are interested in the 

information contained in both the left tail and the right tail of the return distributions. In economics, policy makers 

need to consider not only the most likely future path for the economy but also the distribution of possible 

outcomes about that path (Alan Greenspan, 2003). 

Distributional information of financial variables, both the left tail and right tail, are important for investment 

decisions. In the last few decades, researchers have devoted a lot of effort in developing models that can capture 

decision-makers’ behavior more accurately. One important model along this direction is the “cumulative prospect 

theory” proposed by Tversky and Kahneman’s (1992). For an investor characterized by the prospect theory, 

his/her decision is affected by the whole distribution of return process, not only by the mean and the variance. An 

investor exhibits particular sensitivity to both the left tail and right tail distribution of the return, and the 

sensitivity is asymmetric in two tails. 

In this paper, we discusses the importance of distributional information and properties of measurements of 

distributional information. Particular attention is paid to the right tail measurements that summarize the right tail 

distributional information. Estimators for the right tail measures using quantile regression are introduced.  

2. Measures of Right Tail Distribution 

To capture right tail information in the distribution of financial variables, appropriate measures are needed. 

Right tail moments are natural measures capturing the right tail distributional property. Let R be the return of a 

security, the k-th Right-Tail-Moment Yk is simply the k-th moment of a gain exceeding a specified upper quantile 

of the return distribution. Let τ be an upper quantile, say τ = 95%, if we denote the τ-th quantile of the distribution 

of R by QR(τ), i.e., Pr(R<QR(τ))=τ, the (100τ)% level k-th order Right-Tail-Moment of R is defined as follows: 

Yk(τ) = E[Rk|R ≥ QR (τ)] 

When k = 1, we obtain the Right Tail Mean (RTM) M(τ) = Υ₁(τ). In the case k = 2, we obtain the Right Tail 

Variance (RTV): Variance of return exceeding the (100τ)% level quantile: 

RTV(τ) = E{[R-M(τ)]²|R ≥ Qy(τ)} 

The Right-Tail-Mean (RTM) is an important measure of opportunity. Since it is the right tail counterpart of 

the Expected Shortfall (ES), we may call it the “Expected Windfall” (EW) as in Wan and Xiao (2009). The 

Right-Tail-Variance provides important information of good uncertainty of a security. 

In many applications, investors look at the conditional distribution of returns given available information. In 

such cases, we consider the conditional Right Tail Moments. Let Rt be the return of an asset at time t, and Xt 
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denotes the vector that contains information available at time t, denote the τ-th conditional quantile of Rt as 

QRt(τ|Xt), i.e., Pr(Rt < QRt (τ| Xt)|Xt) = τ, the (100τ)% level k-th order conditional Right-Tail-Moment of R is 

defined as: 

Υk(τ,x) = E[Rt
k | Rt≥ QRt (τ| Xt, Xt = x] 

When k = 1, we get the (100τ)% level conditional Right-Tail-Mean of R 

M(τ,x) = E[Rt| Rt≥ QRt (τ| Xt, Xt = x] 

Again, for k > 1, we usually consider the re-centered Right-Tail-Moment. When k = 2, we obtain the 

conditional Right Tail Variance: 

RTV(τ,x) = E{[Rt -M(τ,x)]²| Rt≥ QRt (τ| Xt, Xt = x} 

3. Important Properties of the Right Tail Mean 

As a measurement of opportunity, the RTM satisfies some important properties. Let Y be return of an asset, 

denote the associated Right Tail Mean as μ(Y), then μ(Y) has the following properties: 

(1) Monotonicity: For any Y₁, Y₂ ∈ X, if Y₁ ≥ Y₂, then μ(Y₁) ≥ μ(Y₂). 

(2) Subadditivity: For any Y₁, Y₂∈X, Y₁+Y₂∈X, and μ(Y₁+Y₂) ≤ μ(Y₁)+μ(Y₂). 

(3) Linear Homogeneity: For any λ ≥ 0, and all Y ∈ X, μ(λY) = λμ(Y). 

(4) Translation Invariance: For any a ∈ R, and all Y∈X, μ(Y+a) = μ(Y)+a. 

The monotonicity property of RTM indicates that it is consistent with stochastic dominance: if a security’s 

distribution dominates another security’s, its opportunity measure should be larger — opportunity increases when 

the return increases. Subadditivity of RTM is a property of no extra synergy. It means that a merger does not bring 

extra opportunity. In practice, although the optimal level of diversification (measured by the rules of 

mean-variance portfolio theory) exceeds 300 stocks (e.g., Campbell, Lettau, Malkiel & Xu, 2001; Statman, 2004), 

it is well-known that the average investor holds much less stocks. This is because that although diversification 

reduces downside risk, it also reduces the upside opportunity. Investors not only are sensitive to the downside 

protection, but also care about the upside potential. Such a property is also reflected on the corporate focus in 

practice. It is found in the literature of merge that marginally profitable projects (whose risks are high) merge to 

survive a period of distress but, if profitability improves, divesture occurs. Linear Homogeneity says that the 

opportunity of a financial position grows in a linear way as the size of the position increases. The last property of 

translation invariance indicates that adding (or subtracting) a sure amount “a” to the portfolio simply increase (or 

decrease) the opportunity measure by “a”. The opportunity of a risk-free asset should be the same as the certain 

payoff provided by the risk-free asset. 

4. Estimating Expected Shortfall and Expected Windfall (Left Tail Mean and Right Tail 
Mean) 

Denote the (100τ)% level Expected Shortfall (Left Tail Mean) by S(τ), and the (100τ)% level Expected 

Windfall (Right Tail Mean) by M(τ). Notice that 

S(τ) = E[R|R ≤ α(τ)] = (1/τ)E[R1(R ≤ α(τ))], 

and 

M(τ) = E[R|R ≥ α(τ)] = (1/(1-τ))E[R1(R ≥ α(τ))], 

the quantile regression method provides great convenience in estimating the LTM and RTM. Given a random 
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sample {Rt, t = 1,⋅⋅⋅,T} on Y, we may estimate α(τ) by the following quantile regression ߙොሺ߬ሻ ൌ ଓ݊݉݃ݎܽ  ఛሺܴ௧ߩ െ ሻ்ߙ
௧ୀଵ


 

we can estimate the LTM S(τ) and RTM M(τ) by replacing the expectations in the above formula by the 

corresponding sample averages. In particular, the LTM S(τ) and the RTM M(τ) can be estimated by መܵሺ߬ሻ ൌ ଵఛ் ∑ ܴ௧1ሺܴ௧  ො்ୀଵߙ ሺ߬ሻ) ܯሺ߬ሻ ൌ ଵሺଵିఛሻ் ∑ ܴ௧1ሺܴ௧  ො்ୀଵߙ ሺ߬ሻ) 

The RTM (Expected Windfall) exists provided E|Y|<∞. But if we further assume that E|R|k <∞ for k ≥ 2, 

under appropriate regularity assumptions, the estimated RTM is a root-T consistent estimator, and is 

asymptotically normal. We first consider this case when the second moment exists. 

For convenience of asymptotic analysis, we first give some regularity conditions that are sufficient for the 

consistency and asymptotic normality of the proposed estimators, although they might not be the weakest 

possible. 

Assumption A: {Rt} is a strong mixing stationary process with mixing coefficient α(n) satisfying |α(n)| < Cρⁿ 

for some C > 0, and 0 < ρ < 1, ܧ‖ܴ௧‖ଶሺଵାఋሻ ൏ ∞, for some δ > 0. 

Assumption A assumes that the process is weakly dependent and appropriate LLN and CLT applies to sums 

of functions of these random variables. Under these assumptions, the limiting distribution of S(τ) and M(τ) are 

given by √ܶሺ መܵሺ߬ሻ െ ܵሺ߬ሻሻ ⟹ ܰሺ0, ߱ଶ ሺ߬ሻሻ √ܶ ቀܯሺ߬ሻ െ ሺ߬ሻቁܯ ⟹ ܰ൫0, ߱ଶ ሺ߬ሻ൯ 

Where ߱ଶ ሺ߬ሻ and ߱ଶሺ߬ሻ are the long-run variances of Ut and Vt, i.e., ߱ଶ ሺ߬ሻ ൌ  ∑ ሺܸܱܥ ௧ܷ, ௧ܷାሻ∞ୀି∞ , ߱ଶ ሺ߬ሻ ൌ  ∑ ሺܸܱܥ ௧ܸ, ௧ܸାሻ∞ୀି∞ . 

The estimators are consistent and asymptotically normal at rate square root of sample size. Furthermore, the 

estimation of the τ-th quantile of R does not appear to affect the limiting distribution of the estimators of RTM.  

5. Tail Measures in the Presence of Heavy-tail Distributions 

The concept of left or right tail measures, ES or RTM, can be applied to many other economic or financial 

variables. In some applications, the distribution of time series has heavy tails and variance may not exist. For 

example, electricity prices can be subject to large spikes due to supply/demand imbalances that cannot be 

temporally mediated (Weron, 2008). There is also evidence on heavy-tail behavior about the distribution of wealth 

and income. Klass et al. (2006) and Nirei and Sonma (2007) documented that the tail exponent of wealth is around 

1.5. Gopikrishnan et al. (2000) find that trading volumes for the 1,000 largest U.S. stocks have Pareto tail with 

exponent around 3/2. The 1987 crash delivered daily a return on the broad S&P500 index that was over 20 

standard deviations below the mean. More recently, the “flash crash” of May 6th, 2010, showed how far stock 

prices could move in a very short period of time. At 2:42 pm, with the Dow Jones Industrial Average down more 

than 300 points for the day, the index began to fall rapidly, dropping more than 600 points in 5 minutes for an 

almost 1000 point loss (or about nine percent) on the day by 2:47 pm. Twenty minutes later, by 3:07 pm, the 

market had regained most of the 600 point drop. We note that a lot of financial theory concerning diversification 

and the risk return trade-off does not require a finite variance. For example the CAPM, “Mean Variance 
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Efficiency”, and “Two fund separation” are known to hold for the more general class of elliptical distributions that 

are characterized by a location vector μ and a scale matrix Ω. The scale matrix Ω = (߱) need not be a covariance 

matrix. Press (1982) shows that provided the expected return exists and is finite ER – rf = βCAPM(Rm - rf), βCAPM} = 

(߱)/(߱), see also Fama and Miller (1972) and Samuelson (1967). So, we don’t need a variance. Stock and 

Watson (2007) discussed the 1987 Black Friday effect on the Dow Jones and its implications for non-normality. 

Yet many risk measures are constructed from variance, and so may be non-robust to large movements in series. 

The consequences of large crashes are enormous, and it is important to have risk management tools that reflect 

this possibility and are robust to it. 

Suppose that Y is the financial variable that we are interested. In this section, we consider the case where the 

RTM is defined (E|Y| < ∞) but the variance of Y is infinite, and so the above results do not necessarily hold. In 

such cases, the ES or RTM can still be consistently estimated, but limiting distributions are different and statistical 

inference requires different methods. 

Given a sample {Y₁,…,YT}, the τ-th quantile of Y, can be estimated simply by the τ-th sample quantile of, 

say, ߙොሺ߬ሻ. Denote a specified lower (left) quantile by τ (say τ = 5%) and a upper (right) quantile by ߬̅(say ߬̅ = 

95%), we may construct the following estimators of left tail mean (i.e., the Expected Shortfall) S(τ), and the right 

tail mean M(߬̅): መܵ൫߬൯ ൌ ଵఛ் ∑ ௧ܻ1ሺ ௧ܻ  ො்ୀଵߙ ሺ߬ሻ) ܯሺ߬ሻ ൌ ଵఛ் ∑ ௧ܻ1ሺ ௧ܻ  ො்ୀଵߙ ሺ߬ሻ) 

Since the asymptotic behavior of መܵ൫߬൯ and ܯሺ߬ሻ are very similar. We present the asymptotic distribution 

of መܵ൫߬൯below. 

Under the assumptions that (Yt) are realizations from a strictly stationary sequence with regularly varying tail 

probabilities with tail thickness index θ, and is strongly mixing with geometrically declining mixing coefficients, ܶሺఏିଵሻ/ఏሻሺ መܵ൫߬൯ - S(τ)) ⇒ ଵఛS ܶሺఏିଵሻ/ఏሻሺܯሺ߬ሻ - Mሺ߬ሻ) ⇒ ଵఛ ܵ̅ 
Where S and ܵ̅ are stable distributions. 

Under heavy tailed assumptions, the estimators are consistent at a rate depending on the tail thickness 

parameter and have a stable limiting distribution; estimation of the quantiles does not affect the limiting 

distribution. However, the limiting distribution is very complex and depends on the dependence properties of the 

data as well as on the tail thickness parameter, so that “plug-in inference” is very complicated. 

In order to conduct statistical inference based on the proposed estimators, we need to estimate the asymptotic 

distributions somehow. In the case of finite variance time series, the ES estimator is root-T consistent and 

asymptotic normal with a variance that can be consistently estimated. In the case with infinite variance, to conduct 

inference about S(τ) and M(߬), we need to estimate consistently the parameters (θ,c₊,c₋) under the weak 

conditions we have imposed, which is a difficult task. The parameter θ can be estimated consistently under weak 

dependence conditions by many methods, see for example Hill (2010). Estimation of the spectral measure has 

been investigated for i.i.d data, see for example Einmahl, de Haan, and Piterbarg (2001). But these results do not 

cover estimation of c₊,c₋ under weak dependence conditions. In this paper, we propose a general method based on 

subsampling (Politis & Romano, 1999). This method is also consistent when the variance of the series exists and 

so is robust with regard to the tail thickness parameter. Since the analysis of S(τ) and M(߬) are very similar. We 

present the discussion of S(τ) below. 
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Let ߠ   be a consistent estimator of θ, given the random sample {Yt, t=1,…,T}, we consider subsamples of 

size M 

{Yt,…,Yt+M-1}, t=1,…,T-M+1, 

and estimate the expected shortfall based on subsamples. Thus the estimators are መܵ൫߬, ,ܯ ൯ݐ ൌ ଵఛெ ∑ ௧ܻା௦1ሺ ௧ܻା௦  ௧ෞெିଵ௦ୀߙ ሺ߬ሻ) 

Where ߙ௧ෞ(τ) is the corresponding estimators based on the subsample {Yt,…,Yt+M-1}. 

We approximate the sampling distribution of ܶሺఏିଵሻ/ఏሻሺ መܵ൫߬൯ - S(τ)),denoted byܨ் (y), by ்ܨ,ெሺݕሻ ൌ 1ܶ െ ܯ  1  1ሺܯሺఏିଵሻ/ఏൣ መܵ൫߬, ,ܯ ൯ݐ െ መܵ൫߬൯൧  ሻ்ିெାଵݕ
ୀଵ  

Let F(y) be the limiting distribution function of ܶሺఏିଵሻ/ఏሻሺ መܵ൫߬൯-S(τ)). Under the assumptions that the tail index 

θ is estimated by ߠ  at rate faster than logT in the sense that log(T)(ߠ  -θ)→0, and M→∞, and M/T→0, as T→∞, 

FT,M (y)→F(y) 

The subsampling method is “robust” in the sense that it is also consistent even in the case of finite variance, 

where normal asymptotics prevail. 

6. Conclusion 

The distributions of financial return processes contain rich information that affects the investors’ decision. 

Two important distributional measures are the left tail mean and the right tail mean. Both the left and right tail 

measures can be estimated by the sample analogues. There is no doubt that right tail information, together with the 

left tail information, have important impacts on financial decisions such as portfolio construction. 
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