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Abstract: Pricing American options is notoriously intractable or computationally challenging due to its 

complexity feature of dynamic exercise strategy and the inherent uncertainty pertaining to its underlying asset 

price. Numerically, this study leverages the Least Squares method to price American options based on two 

simulation methods. In particular, to simulate the price process of the underlying asset, we propose the 

Transform-Expand-Sample (TES) approach, and compare its performance with the benchmark model of random 

walk. Random walk method is widely used if the volatility of the underlying asset price is the only factor affecting 

its behavior. In contrast, the TES approach is a versatile methodology for modeling stationary time series, whose 

principal merit is its ability to simultaneously capture first-order (marginal distribution) and second-order 

(autocorrelations) statistics of empirical time series. We experiment with several real-market American call 

options to illustrate the implementation of those two models. With an acceptable accuracy, the estimated option 

prices obtained by both approaches match the actual market price of the American option.  
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1. Introduction  

American options (call or put) are characterized by their dynamic exercising strategy and it is notoriously 

challenging to price their price even with a large-scale computational simulation. There are several algorithms for 

pricing American options leveraging Monte Carlo simulations (Wilmott P., 2006; Hull J. C., 1989). One of these 

most popular and practical approaches is so-called Least Squares approach, introduced by Longstaff and Schwartz 

(2011). In particular, the Least Squares method first simulates a number of the price paths of the underlying asset 

till its maturity time. Then for simulated each path, it calculates the discounted cash flows over time. The most 

critical step is that, at each time step, one compares the benefits of exercising decision with non-exercising the 

option in a simple regression manner.  

To simulate the price paths of the underlying asset involves forecasting techniques for time series. In 

particular, if the risk-free rate and the volatility of the asset price are known, the Monte Carlo method could 

simulate future realizations by means of lognormal random walking. However, in most practical cases, the 
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volatility is not easy to be observed or is significantly time varying. Based on empirical data, to make accurate 

forecasting becomes overwhelmingly critical. It is well known that the observed empirical data contains a great 

deal of meaningful information. Statistically, the marginal distribution and autocorrelations are the main statistics 

which can be obtained directly from the empirical data and thus play an important role in forecasting models. 

From the simulation perspective, the histogram inversion can be utilized to generate random variables which have 

the same density as the one pertaining to the empirical data. Furthermore, since most of the financial time series 

are highly auto-correlated, the simulated data should have the same autocorrelation statistics as that of empirical 

data. To this end, the Transform-Expand-Sample (TES) methodology was introduced in the early 1990’s 

(Jagerman D. L. & Melamed B., 1992). The principal merit of TES approach is its ability to simultaneously 

capture first-order (marginal distribution) and second-order (autocorrelations) statistics of empirical time series. 

As the original purpose, it was designed to model telecommunication traffic, especially in emerging high-speed 

communications networks. In this study, we shall apply the TES methodology to forecast the underlying asset 

price and then leverage the Least Squares approach to price American options. 

2. Pricing American Option 

2.1 Data Collection 

We collected the weekly index of S&P 100 from May 5, 2000 to May 4, 2007, and the corresponding S&P 

index call option prices with various maturity times: May 18 (2 weeks), Jun. 15 (6 weeks), Jul. 20 (11 weeks), 

Aug. 17 (15 weeks), Sep. 21 (20 weeks), and Dec. 21 (33 weeks). We use the Treasure Bill (T-bill in short) as the 

risk free asset. According to the public data of T-bill, its return rates of 4 weeks, 13 weeks and 26 weeks are 4.61%, 

4.79%, and 4.82%, respectively. The T-bill return rates of other length of weeks are obtained by a linear-piecewise 

function of the aforementioned 4 weeks, 13 weeks, and 26 weeks. For example, the T-bill return rate of 6 weeks is 

approximated as:  
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2.2 Simulating the Asset Price Path 

2.2.1 Monte Carlo Method of Random Walk 

From the S&P 100 weekly index, we estimate the volatility of the weekly return as 2
wσ  from which we 

estimate the annual volatility as 2 252 w=σ σ . Then the future’s weekly price of the underlying asset is obtained 

iteratively by  
2
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Where δt = 1/52 and the noise term Z follows a standard normal distribution, i.e., 0 1( , )Z N . 

2.2.2 TES (Transform-Expand-Sample) 
The empirical marginal density of an empirical sample is estimated in practice by an empirical histogram 

statistic in the form of 1ˆ ˆ{( , , ) : }j j jH l r p j J= £ £ , where J denotes the number of histogram cells, [ , )j jl r  is 

the jth cell with width j j jw r l= - , and ˆjp is the probability estimator for the jth cell. The empirical probability 

density function (pdf) is estimated as 
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Where indicator function 1 ( )A x  is 1 if x AÎ ; 0 otherwise. The corresponding cumulative distribution 

function (cdf) is a piecewise linear function given as 
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The histogram inversion is a piecewise linear function as follows 
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For a discrete-time stationary stochastic process, 0{ }n nX ∞
= , its autocorrelation function ( )Xρ τ  consists of 

the lagged correlation coefficients, 
2
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Where X <¥μ  and 2
X <¥σ  are the common mean and variance, respectively. 

The TES model provides a generic scheme for generating stationary sequences. 

 
Figure 1  Foreground/Background Schemes 

 

 
Figure 2  S&P 500. (3/7/2005-2/27/2006) and TES Recursive Weekly-Forecast 
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Shown in Figure 1 is the generic sketch of TES process, where D (referred to as the distortion) transforms the 
background process {Un} to a corresponding foreground process {Xn}. In particular,  

(1) {Vn} is a sequence of innovations (i.i.d random variables) with common density fV, independent of U0. In 
particular, fV is approached by step-function 
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Where K is the number of steps, Pk is the mixing probability of step k. 
(2) 0 0 1~ ( , )U Uniform  is the initial variant in a background TES sequence. 

(3) The background sequence: 0
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(4) 1
ξ( ( ))XD F S x-=  is a distortion function, in which Sξ is defined by a stitching parameter ξ 
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(5) The foreground sequence {Xn} is obtained based on corresponding background sequence {Un}, 

( )n nX DU=           (8) 

Mathematically, for a given lag τ, the corresponding autocorrelation is 
2
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Where ˆ ( ) ( )sx
V Vf s e f x dx

¥ -

-¥
= ò  is the Laplace transform of the pdf of innovation { }nV . 

Typically, the following outlines the algorithm for the TES method.  

(a) Setting up the empirical histogram inversion and autocorrelation function: The histogram inversion 

and autocorrelation function are computed from empirical data,  
(b) Selecting the stitching parameter and innovation density: The core activity is to find the optimal 

innovation density fV and stitching parameter ξ to minimize the weighted difference between empirical 

autocorrelation in Equation (5) and the TES autocorrelation in Equation (9). 

(c) Generating TES sequences: With the optimal parameters fV and ξ obtained in (b), we generate the TES 

sequences according to the scheme depicted in Figure 1. 

Figure 2 depicts the results of weekly forecasting by TES. Graphically, TES performs relatively well on 

one-week forecasting.  

2.3 Pricing the American Option 

2.3.1 Example for the Least Squares method 
To illustrate the algorithm in detail, we focus on a simple example for pricing the America Call option. First, 

we generate 5 realizations of the asset path from now on to its maturity date. The initial price of the underlying 
stock is s0 = 689.4, the strike price is k = 670, and the risk free rate be r = 0.0457. Note that the discount 

coefficient can be computed by β = e-r/52. 
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Table 1  Eight Paths Simulated by Random Walk Method                  Table 2  First Step Regression  

 S0 S1 S2 S3 Payoff   Y X 

Path 1: 686.4 709.93 717.1 714.3 44.2951  Path 1: ß *44.2951 717.1 

Path 2: 686.4 695.03 689.49 702.59 32.5902  Path 2: ß *32.5902 689.49 

Path 3: 686.4 708.97 715.25 709.23 39.2334  Path 3: ß *39.2334 715.25 

Path 4: 686.4 686.52 676.11 654.05 0  Path 4: ß *0 676.11 

Path 5: 686.4 678.55 679.93 668.33 0  Path 5: ß *0 679.93 

Path 6: 686.4 687.81 668.49 679.4 9.3975  Path 6:   

Path 7: 686.4 702.02 697.53 696.91 26.9139  Path 7: ß *26.9139 697.53 

Path 8: 686.4 678.7 683.9 688.23 18.2317  Path 8: ß *18.2317 683.9 
 

The computational mechanics is described as follows: 

(1) Calculating the payoffs at the expiration for each path (please refer to Table 1). Table 1 depicts the 

expected value what we would receive if we exercised on the maturity.  

(2) Determining whether to exercise earlier. Going backward to time 2, we calculate two column values: X 

(the stock price at time 2, for those paths which are in the money at that time) and Y (the payoffs for these paths, 

discounted back from maturity to time 2); cf. Table 2. 

(3) Calculating the cash flow from holding the option, conditional on the stock price at time 2. Use a 

regression of Y as a quadratic function of X by least squares methods: Y = 0X2 + 44X - 15562. 

(4) Comparing the two values, “Exercise now” and the value computed by the regression function, and then 

selecting the one with higher value; cf. Tables 3 & 4. 
 

Table 3  Regression                    Table 4  Cash Flows           Table 5  Final Cash Flows 

 Exercise now by the reg.  S2 S3  S1 S2 S3 

Path 1 47.1 41.2256  47.0957 0  0 47.0957 0 

Path 2 19.49  23.9502  0 32.5902  25.0324 0 0 

Path 3 45.25  41.5287  45.2461 0  0 45.2461 0 

Path 4 6.11 -1.2311  6.1080 0  16.5191 0 0 

Path 5 9.93 7.0774   9.9267 0  0 9.9267 0 
 

(5) By repeating the same calculation backward to time zero, we obtain the final cash flow matrix; cf. Table 5. 

(6) The last step is to present the values for each of these cash flows backward to time zero and average them 

as the option price. In this example, the option price is computed to be $26.448. 

2.3.2 Implementations 

For a given American call option, we simulate 100 paths by random walk method and TES. With the 

simulated 100 paths, we compute the option price via least squares method. By repeating the same experiments 

for 100 times, we take the mean value as the option price and obtain the 95% confidence intervals via computing 

z-test. 

3. Simulation Performance 

3.1 Option Pricing Based on Random Walk Simulation 

The first three sub-pictures in Figure 3 depict the computed option price compared with its market prices. 

Each of them has five curves: red curve (bid price), green curve (asked price), black curve (estimated price), and 

two yellow dash-dot curves (the upper and lower boundaries for the 95% confidence interval). It is shown that the 
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computed option prices via the random walk simulation are relatively approximating the market prices. The forth 

sub-picture depicts the estimated prices for American calls with different maturities. For the same strike price, it is 

shown that the option price increases as the option lifetime gets longer. 

 

 
Figure 3  Computed Option Prices (Random Walk) v.s. Market Prices: Selected Maturity for Varying Strike Prices 

 

3.2 Performance of the TES Method 

Leveraging the TES approach to simulate the asset price paths instead of random walk approach, we obtained 

the call price with the Least Squares method in option pricing. The following figures depict the estimated option 

prices via the TES method for different maturities. 
 

 
Figure 4(a)  2 Week Call of S&P 100 
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Figure 4(b)  6 Week Call of S&P 100 

 

 
Figure 4(c)  33 Week Call of S&P 100 
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Furthermore, for a given option the confidence intervals get wider when the option maturity gets longer. Another 

observation is that the TES approach performs well in a short term forecasting.  

4. Conclusion 

We leveraged the Least Squares method to price American options. To simulate the asset price, we compared 

random walk and TES approaches. In general, the Least Squares random walk simulation could fit a good model 

to the option market. In contrast, the TES performs well in short term forecasting but gets poor for long ones. For 

each of the two approaches, the confidence interval gets wider as the option maturity gets longer. One of the 

intuitive reasons is that the option market accumulates uncertainty over time. One possible explanation for the 

error of both methods is the granularity of time intervals: the granularities in the models are weeks instead of days. 
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