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Modeling Cybercrime Revenue Losses*  

Thomas Fink, David A. Walker 
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Abstract: A dynamic model is developed to represent revenue losses where a firm is a cybercrime victim 

after a period of strong revenue growth. The firm’s goal is assumed to be revenue maximization. An application 

illustrates that it will require a long time before the firm reestablishes strong revenue growth after cybercrime. The 

continuing costs Target and Home Depot incur are examples. The model portrays dynamic stages of revenue 

growth for a victimized firm. The model can be extended to a wide range of other business and economic losses 

for public institutions, assuming a different utility function.  
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1. Background 

 Models to portray economic losses often imply a philosophical approach. Some models are based on pro 

forma assumptions that mostly depend on dynamic projections. Other approaches depend on sophisticated 

mathematical theories or treatments that often originate with the physical sciences and chaos theory. 

 This paper provides a dynamic model for the revenue maximizing firm to portray revenue losses for a 

catastrophic event such as having credit files hacked. The event is not expected to reoccur but causes continuing 

revenue losses that can only be recouped over many future periods, if ever. Firms whose credit files have been 

hacked invest considerable resources to insure that files are protected in the future and to assure customers they 

will be protected. This is above and beyond legal settlements that may be necessary to satisfy customers or clients. 

 Section II provides a brief literature review from which a dynamic revenue growth model is developed for a 

victimized firm in Section III. In Section IV, the model is applied to a cybercrime case, like the one that faced two 

large US retailers — Home Depot and Target. The Conclusions follow. 

2. Literature 

2.1 Framework  

 Forensic business loss models and applications have often been projections of pro forma cases. The cases 
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presented by Pratt and Niculita (2008) are classic examples. 

 An alternative is to develop dynamic conditions from chaos theory and differential equations (Murphy, 1996; 

Hirsch et al., 2013). Werndl (2009) discusses the unpredictability and uncertainty of chaos losses. Alligood and 

Yorke (2008, p. 41) discuss stability conditions related to the model in this paper. They define a “chaotic trajectory” 

to be an unstable, oscillating time path. 

 Beinhocker (2006) and Meyer et al. (2002) have applied chaos theory to corporate cases. Beinhocker draws 

upon the network phenomenon of complexity catastrophe to explain corporations’ inability to adapt to change. 

Meyer and his co-authors analyze project areas where project managers did not distinguish between project risk 

and uncertainty. They discuss predictable plan variations to unforeseeable effects that might include earthquakes, 

hurricanes, external forces and terrorist attacks.  

 The impacts of cybercrime extend across every industry and the public sector. The IRS and US Office of 

Personnel Management have experienced recent major invasions. Benardo and Weatherby (2015) offer “A 

Framework of Cyber Security” from a public sector perspective.   

2.2 Recent Experience 

 Recent incidences and surveys demonstrate the need for a theoretical framework to analyze short-term and to 

project long-term revenue losses for a corporate cybercrime victim. A Net Diligence Cyber Claims Study (2014) 

analyzes a sample of 117 insurance claims from 2013 and estimates the average payout for a large, hacked 

company to be almost $3 million, plus an average legal defense cost of almost $700,000. These claims represent 

only 5-10 percent of 2013 cyber claims, since the sample includes only insurance claims.  

 A McAfee Intel Security study (2014) for the Center for Strategic and International Studies estimates that 

annual global cybercrime direct plus indirect costs may reach $575 billion. They indicate US cybercrime costs 

could be $115 billion, 0.64 percent of US GDP, and more than twice the percentage for Germany. “Cybercrime 

damages trade, competitiveness, innovation, and global economic growth” (McAfee, p. 3), which is the basis for 

revenue deterioration that is assumed in this study. Krebs on Security (2014) claims Target’s loss for their 

December 2013 hacking is $420 million, almost 0.60 percent of the firm’s annual 2014 sales ($72.3 billion).  

2.3 Foundations  

 The foundations for the model are the classic Friedman and Savage (1948) utility perspective under 

uncertainty and Baumol’s (1967) revenue maximization hypothesis. The firm maximizes its utility as a function of 

revenue, U = U(R), under uncertainty, as Friedman and Savage represented for consumers. The firm takes 

precautions against cybercrime, CC, but cannot predict how, when (t), or to what extent crime may occur. An 

extension would be to introduce a cost and/or profit constraint to include cybercrime and operations’ costs.  

 Let r represent the firm’s normal revenue growth rate, t is the time period, and CC represents the potential but 

uncertain cybercrime. U = U(R) and R = R(r, t, CC) and, dr/dt > 0 when CC = 0. When a crime occurs, CC ≠ 0 

and dr/dt < 0 or at least the growth rate is smaller than when there is no crime. 

3. Revenue Loss Model 

 Revenue losses from cybercrime can be analyzed within the framework of a dynamic loss model. The model 

represents the victimized firm’s income. The firm is assumed to be sufficiently large and geographically diverse 

that it operates in continuous time in a multitude of markets. The cyber catastrophe is assumed to disrupt the 

firm’s revenue stream and cause dramatic revenue deterioration, with declining sales as a result of the cybercrime. 
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Restoring public confidence and reestablishing normal revenue growth will require significant company resources 

and the passage of time. 

3.1 Four Periods  

 Consider four distinct time periods: (1) a normal business period before the cybercrime; (2) the time, t = t1, 

when the catastrophic crime occurs; (3) the period beginning with t1 + ∆t when revenue impacts are recognized 

through the end of the period when the negative economic impacts have dissipated and most revenue deterioration 

ends; and (4) the time when the hacked firm begins rebuilding its revenue growth. (The notation {t = a:b} defines 

continuous time t such that a < t < b.) 

 After a normal period of revenue growth {t = 0:t1} at a rate r1, the firm encounters the catastrophe at t = t1. 

Significant revenue losses and revenue deterioration at a rate of r2 continue until t = t2 {t = t1:t2}, the end of 

period 3.. In period 3, revenues are assumed to deteriorate, or to grow at a much slower rate than in period 1; r2 < r1 

is a sufficient condition. It is assumed, however, that revenues decline throughout period 2, in which case r2 < 0.  

Beginning in the third period (at t = t2) for an unspecified time {t = t2:t3}, the firm is assumed to begin 

recapturing its revenue growth at a rate of r3. This growth rate is likely to be smaller than it had been in the normal 

growth period before credit files were hacked at t1. Therefore, 0 < r3 < r1 is expected. 

3.2 Models for Three Intervals 

 Revenues for the distinct periods with the time intervals {0:t1}; {t1:t2}; and {t2:t3} are represented by 

simple growth models. The catastrophe occurs at the end of period 1 at t = t1, the boundary between the first and 

second periods. 

Let the firm’s credit sales at time t be represented by R(t). Let Rt represent credit sales across the range of 

time t, and assume that all sales are credit sales.  

 Period 1 {0:t1}: At time, t, within {0:t1}, revenues R(1) are represented by f1 (t) and approximated by f1 (t) = 

A1exp(r1t) with a sales growth rate of r1. Aggregate credit sales for period 1 are. 

t1 t1

1 1 1 1 1 1

0 0

R1 (t)dt= [A exp(r t)dt [A /r ][exp(r t1) 1]f= = −                    (1) 

r1 is assumed to be a constant, but it could be a function of exogenous factors, such as the competitive 

industry environment or economic policy changes, depending on the firm’s market and the magnitude of the 

cybercrime.  

 For this or any period, the simple model might include cyclical revenues assuming f1(t) = A11 exp(r11t) + A12 

exp(r12t) with some restrictions on r11 and r12. 

f1 (t) could be a much more complex, continuous function. 

 Period 1 – Period 2 Border: The crime is assumed to occur at the border between periods 1 and 2, at t = t1. 

Credit revenues are assumed to decline immediately at t1+ ∆t to only a percentage of credit sales at t = t1 - ∆t. Let 

k1 be the percentage of credit sales that continue into period 2 at t1+∆t in contrast to the credit sales at t = t1 - ∆t. 

(If, for example, 30 percent of sales were lost immediately at t1, k1 = 0.70 and (1 - k1) = 0.30 represents the 

immediate hacking revenue loss.)  

Period 2 {t1:t2}: The revenue in period 2 is represented by 

 2 2 2R(2) f (t)=A exp(r t)=  and 
t2

2 2

t1

R2 A exp(r t)dt=                        (2) 
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At the beginning of period 2, initial revenues are  

2 2 1 1 1 1 2 1 2 1A exp(r t1)=k A exp(r t1) and k [A /A ]e xp((r -r )t1)=  

 The initial decline of credit sales in period 2 is represented by k1 < 1.0 and r2 < 0, the deterioration of credit 

sales throughout {t1:t2}. Credit sales deteriorate throughout the second period {t1:t2}, while the short-term cyber 

losses continue. Some consumers may substitute cash for credit sales from the “hacked” firm and others switch to 

competitor firms.  

 To link periods 1 and 2, let k2 = r2/r1 (r1 > 0 and r2 < 0). k2 < 0 represents the relative magnitude of the revenue 

deterioration rate within period 2 compared to revenue growth rate in period 1. 

 Substituting for A2 and r2, the revenue path in period 2 can be represented by  

t2 t2 t2

2 2 2 1 1 2 1 1 2 1 2

t1 t1 t1

R2 f (t)dt= A exp(r t)= k A exp(k r t), 0<k <1, k <0, r >0, r <0=             (3) 

Integrating (3) and then substituting k1 = [A2 / A1] exp((r2 - r1) t1) for k1 provides  

2 2 1 2 1 2 1 2 1R2=[A /(k r )]exp((r -r )t1)[exp(k r t2)-exp(k r t1)]                   (4) 

where [A2 /(k2 r1 )] < 0 and k1, k2 , r1 and r2 reflect the possibilities between A2 exp(r2t) and A1 exp(r1t); r1 > 0, 

r2 < 0, 0 < k1 < 1, k2 < 0, and r2 = k2, r1 < 0 delineate the deteriorating revenues throughout period 2.  

3.3 Measuring Catastrophe 

 If no cybercrime or catastrophe had occurred at t1 and the firm’s revenues continued to grow in period 2 as 

they had in period 1, r1, the revenue in period 2 would be 

t2

1 1 1 1 1 1

t1

R2a= A exp(r t)dt=[A /r ][exp(r t2)-exp(r t1)]                   (5) 

As a result of the crime, the firm’s revenue in period 2 is represented by (4). 

3.4 Period 2 Loss 

 The revenue loss in period 2 is the revenue that would have been earned “but for” the hacking — equation 

(5), minus the revenue earned in period 2, equation (4). 

1 1 1 1 2 2 1 2 1 2 1 2 1R2LOSS=[A /r ][exp(r t2)-exp(r t1)]-[A /k r ][exp(r -r )t1][exp(k r t2)-exp(k r t1)]    (6) 

Since k2 r1 is negative and t2 > t1, each term in brackets in equation (6) is positive. 

 Period 3 {t2:t3}: Beginning at t2, the initial hacking effect is assumed to have passed and the firm enters a 

positive revenue growth stream. Within period 3, {t2:t3} R3 = f3 (t) is represented by A3 exp(r3t). Across period 3, 

credit sales are 

 
t3 t3

3 3 3 3 3 3 3

t2 t2

R3= f (t)dt= [A exp(r t)]dt=[A /r ][exp(r t3)-exp(r t2)]                 (7) 

Revenues in period 3 are assumed to grow, but the growth rate, r3, is likely to be smaller than r1, as residual 

damage from the cybercrime continues. Moreover, it may be a long time into the future before r3 becomes as large 

as r1. R3 will be less than R1, unless the period {t2:t3} is considerable longer than {0:t1}. It may take a long time 

for many credit customers to have confidence that their data are protected. 
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3.5 Aggregate Revenues across Three Periods: {0:t3} 

The expected conditions across the three periods are:  

r1 > 0; r3 >0; r1 > r3; r2 <0, r2 = k2 r1 <0; Іr1І > Іr2І and -1 < k2 < 0, 0 < k1 < 1.  

The expected permanent damage to the revenue stream as a result of the catastrophe is reflected by these 

characteristics and assumptions about r1, r2, r3, k1 and k2. 

Total revenue (TR) over the whole period 0 to t3 is represented by R1 + R2 + R3, the sum of equations (1), 

(4), and (7): 

1 2 3

1 1 2 2 3 3

0 1 2

exp( ) exp( ) exp( )
t t t

t t

TR A rt dt A r t dt A r t dt= + +    

1 1 1 2 2 1 2 1 2 1 2 1 3 3 3 3=[A /r ][exp(r t1)-1]+[A /(k r )][exp((r -r )t1][exp(k r t2)-exp(k r t1)]+[A /r ][exp(r t3)-exp(r t2)]  (8) 

The loss from the crime is given by equation (6) plus the slower revenue growth in period 3. The various 

coefficients also reflect the hacking losses to the firm’s revenue stream through t1< t < t3. The relative sizes of the 

coefficients determine the loss and recovery from the crime.  

 Figure 1 portrays the revenue growth in the first period; deteriorating revenue in period 2 beginning at t1 and 

continuing through t2 (r2 < 0); and the expected recovery through period 3 (0 < r3 < r1). 
 

 
Figure 1  Credit Sales Catch Up 

 

 The revenue losses are the difference between the dotted and solid lines beginning at t1. To overcome the 

cybercrime losses in period 3, the revenue growth rate beginning at t2 (r3) would need to be considerable larger 

than the growth rate in period 1 (r1), unless the period t2 to t3 were considerably longer than the period 0 to t1. 

The revenue growth rate would have to be greater in period 3 ([t2:t3]) than period 1 to reach the level that the firm 

would have been expected by t3 if hacking had not occurred. 
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4. Losses for the Bullet Company: A Cybercrime Victim 

 Suppose the Bullet Company experienced the credit sales portrayed in Table 1 and hacking occurred at the 

end of its 14th month (the end of period 1).  
 

Table 1  Bullet Company Monthly Revenues 

    Period 1   Period 2     Period 3 

months [0:t1] months [t1:t2] no hacking months [t2:t3] 

1 5000000 15 3592276 5388414 27 3055390 

2 5050125 16 3583295 5415356 28 3065574 

3 5075376 17 3565401 5442433 29 3086045 

4 5100753 18 3538727 5469645 30 3117009 

5 5126256 19 3503473 5496993 31 3158777 

6 5151888 20 3459898 5524478 32 3211776 

7 5177647 21 3408322 5552100 33 3276549 

8 5203535 22 3349122 5579861 34 3353771 

9 5229553 23 3282723 5607760 35 3444255 

10 5255701 24 3209596 5635799 36 3548971 

11 5281979 25 3130253 5663978 37 3669060 

12 5308389 26 3045239 5692298 38 3805857 

13 5334931       39 3960914 

14 5361606       40 4136028 

15         41 4333281 

16         42 4555075 

18         43 4804181 

19         44 5100746 

20         45 5433670 

21         46 5807619 

22         47 6227993 

23         48 6701059 

24         49 7234091 

Rate r1 = 0.5% Rate r2 = -0.25%   Rate r3 = 0.33% 

Loss = 25,800,789.00 
 

If revenues for the first month were $5 million (month 1 of period [0:t1]) and monthly revenues increased by 

0.50 (r1) percent (6 percent per annum) for the next 13 months (months 2-14), monthly revenues would have 

reached $5,361,606. Hacking occurs at t = t1 = 14 and the immediate revenue loss for the first month of the 

hacking is assumed to be 33 percent (k1). For the first month of period 2, revenue declines to $3,592,276.  

Revenues continue to decline each month in period 2 by 0.25 (r2) percent per month (-3.0 percent per annum). 

Period 2 is assumed to last 12 months (months 15-26). The monthly revenues would decline to $3,045,239 for the 

final month of period 2. For period 2, the losses are the revenues that would have been earned for the months in 

period 2, if revenues had continued to grow at 0.50 percent per month, minus the assumed revenues for period 2. 

The total loss for period 2 is $25,800,789. 

 The column for period 3 shows monthly revenue assuming growth at a rate of 0.33 (r3) percent per month 

(4.0 percent per annum) from the beginning of period 3 (month 27), having declined to $3,045,239 for month 26. 

It requires 20 months (months 27-46) in period 3 until the revenues exceed the revenues the last month of period 1 
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(month 14). The lost credit sales from the hacking may never be fully recaptured. That would require the revenue 

growth rate in period 3 (r3) to exceed the revenue growth rate in period 1 (r1). 

5. Conclusion 

 Numerous firms have incurred significant revenue losses from cybercrime. This paper provides a dynamic 

model to portray catastrophic revenue loss for the victimized firm after a successful revenue growth period. The 

application illustrates the potential losses and lengthy period before the firm is likely to reestablish revenue 

growth. The firm is unlikely to regain all of the lost revenue and it is likely to be a long-time, and maybe forever, 

before the firm’s revenue growth rate returns to the growth rate before the crime occurred. 
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