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Abstract: Biological treatment is attractive as a potentially low-cost technology, which converts toxic organic contaminants into CO2 
and biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation, and today, it is considered as the best 
alternative to clean up polluted soils. For this bioprocess, one challenge is to provide enough O2 and nutrients to enable rapid 
conversion of contaminants by either indigenous microorganisms or inoculated species. Another challenge is to achieve efficient 
contact between the active micro-organisms and the contaminants, which may represented a problem with in-situ treatment. An 
attractive alternative to overcome this problem is to apply a biological treatment in slurry phase using Horizontal Rotating Drum (HRD). 
Nowadays, semi empirical HRD models, based on the Monod equation, have been developed to predict micro-organism growth as a 
function of available contaminants concentration. However, as the application of such models requires experimental work for 
calculating the kinetics parameters involved, so an alternative modeling technique is required. The Kalman Filter Recurrent Neural 
Network Model (KF RNNM) offers many advantages as the possibility to approximate complex non linear high order multivariable 
processes, as the biodegradation process is. The KF RNNM has been applied for measurement data filtering and parameters plus state 
estimation of hydrocarbons biodegradation process, contained in polluted slurry, treated in a rotating bioreactor. Then the KF RNNM is 
simplified and used to design a Sliding Mode Control (SMC) of two-input two-output high order nonlinear plant. The KF RNNM 
learning algorithm is the dynamic Backpropagation one (BP). The graphical simulation results of the system approximation, and 
indirect adaptive neural control, exhibited a good convergence, and precise reference tracking. 
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1. Introduction   

The Recent advances in understanding of the 

working principles of artificial neural networks has 

given a tremendous boost to identification, prediction 

and control tools of nonlinear systems [1-4]. The main 

network property namely the ability to approximate 
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complex non-linear relationships without prior 

knowledge of the model structure makes them a very 

attractive alternative to the classical modelling and 

control techniques. This property has been proved by 

the universal approximation theorem [5]. Among 

several possible network architectures the ones most 

widely used are the feed forward and the recurrent 

neural networks. In a feed-forward neural network the 

signals are transmitted only in one direction, starting 

from the input layer, subsequently through the hidden 

layers to the output layer, which requires applying a tap 
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delayed global feedbacks and a tap delayed inputs to 

achieve a nonlinear autoregressive moving average 

neural dynamic plant model. A recurrent neural 

network has local feedback connections to some of the 

previous layers. Such a structure is suitable alternative 

to the first one when the task is to model dynamic 

systems, and the universal approximation theorem has 

been proved for the recurrent neural networks too. The 

preferences given to recurrent neural network 

identification with respect to the classical methods of 

process identification are clearly demonstrated in the 

solution of the “bias-variance dilemma” [5]. 

Furthermore, the derivation of an analytical plant 

model, the parameterization of that model and the 

Least Square solution for the unknown parameters 

have the following disadvantages: (a) the analytical 

model did not include all factors having influence to 

the process behavior; (b) the analytical model is 

derived taking  into account some simplifying 

suppositions which not  ever match; (c) the analytical 

model did not described all plant nonlinearities, time 

lags and time delays belonging to the process in hand; 

(d) the analytical model did not include all process and 

measurement noises which are sensor and actuator 

dependent. In Ref. [6] the method of invariant 

imbedding has been described. This method seemed to 

be a universal tool for simultaneous state and parameter 

estimation of nonlinear plants but it suffer for the same 

drawbacks because a complete nonlinear plant model 

description is needed.  

So, the unknown nonlinear technological processes 

needed a new tool for modeling and identification 

capable to correlate experimental data and to estimate 

parameters and states in the same time, processing 

noisy measurements. Such efficient tool is the Kalman 

Filter Recurrent Neural Network (KF RNN), where the 

estimated parameters and states could be used directly 

for control [3, 7].  

2. Recurrent Neural Network Methodology 
for Plant Modeling 

2.1 Kalman Filter Recurrent Neural Network 

Topology and Learning 

Block-diagrams of the Kalman Filter Recurrent 

Neural Network (KF RNN) model and its adjoined, are 

given in Fig. 1 and Fig. 2. Following Fig. 1 and Fig. 2, 

we could derive the dynamic Backpropagation (BP) 

algorithm of its learning using the diagramatic method 

[8]. 

Denoting by X, Y, U the state, output, and 

augmented input vectors with dimensions N, L, (M+1) 

and by Z the (L+1) — dimensional input of the 

feed-forward output layer, we can write the following 

equations for the KF RNN topology and learning: 

X(k+1) = A1X(k)+BU(k)-DY(k)        (1) 

B = [B1;B0]; U
T = [U1;U2]           (2) 

A1= block-diag (A1,i), |A1,i |<1        (3) 

Z1(k) = G[X(k)]                   (4) 

C = [C1;C0]; Z
T = [Z1;Z2]            (5) 

V1(k) = CZ(k)                    (6) 

V(k+1) = V1(k) + A2V(k)           (7) 

A2 = block-diag(A2,i), |A2,i |<1        (8) 

Y(k) = F[V(k)]                    (9) 

W(k+1) = W(k)+ηΔW(k)+αΔW(k-1); |Wij|<W0  (10) 

E(k) = Yd (k)-Y(k); E1(k) = F’[Y(k)] E(k)  (11) 

 F’[Y(k)] = [1-Y2(k)]           (12) 

ΔC(k) = E1(k)ZT(k)            (13) 

ΔA2(k) = E1(k)VT(k)           (14) 

Vec(ΔA2(k)) = E1(k)▫V(k)       (15) 

E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (16) 

G’[Z(k)] = [1-Z2(k)]           (17) 

ΔB(k) = E3(k)UT(k)           (18) 

ΔD(k) = E3(k)YT(k)             (19) 

ΔA1(k) = E3(k)XT(k)          (20) 

Vec(ΔA1(k)) = E3(k)▫X(k)        (21) 
 

 
Fig. 1  Block-diagram of the KF RNN model. 



Application of Kalman Filter Recurrent Neural Network for Identification and Control of Hydrocarbon 
Biodegradation Bioprocess 

  

296

 
Fig. 2  Block-diagram of the adjoined KF RNN model. 
 

where: Z1 and U1 are the (Nx1) output and (Mx1) input 

of the hidden layer; the constant scalar threshold entries 

are Z2 = -1, U2 = -1, respectively; V is a (Lx1) 

pre-synaptic activity of the output layer; the super-index 

T means vector transpose; A1, A2 are (NxN) and (LxL) 

block-diagonal weight matrices; B and C are [Nx(M+1)] 

and [Lx(N+1)] — augmented weight matrices; B0 and 

C0 are (Nx1) and (Lx1) threshold weights of the hidden 

and output layers; F[.], G[.] are vector-valued tanh(.) or 

sigmoid(.) — activation functions with corresponding 

dimensions; F’[.], G’[.] are derivatives of the tanh(.) or 

sigmoid activation functions; W is a general weight, 

denoting each weight matrix (C, A1, A2, B, D) in the KF 

RNN model, to be updated; ΔW (ΔC, ΔA1, ΔA2, ΔB, 

ΔD), is the weight correction of W; Yd is an 

L-dimensional output of the approximated plant taken as 

a reference for KF RNN learning; η, α are learning rate 

parameters; ΔC, ΔB, ΔD, ΔA1, ΔA2 are weight 

corrections of C, B, D, A1, A2, respectively; the 

diagonals of the matrices A1, A2 are denoted by Vec 

(A1(k)), Vec (A2(k)), respectively, where equations (15), 

(21) represented their learning as an element-by-element 

vector products; E, E1, E2, E3, are error vectors (see Fig. 

2), predicted by the adjoined KF RNN model. The 

stability of the KF RNN model is assured by the 

activation functions [-1, 1] bounds and by the local 

stability weight bound conditions given by equations (3), 

(8). Here the input vector U and the input matrix B of the 

KF RNN are augmented so to fulfill the Kalman Filter 

requirements and the matrix D corresponded to the 

feedback gain matrix of the KF. The KF RNN is learnt 

applying the BP learning algorithm which is in fact an 

unrestricted optimization procedure, derived using the 

adjoined KF RNN (see Fig. 2) based on the Separation 

theorem [6], and the diagrammatic method [8]. 

2.2 KF RNN Methodology of Plant Identification and 

Sliding Mode Control 

The block-diagram of the indirect adaptive neural 

control using the KF RTNN as plant identifier and a 

Sliding Mode Controller (SMC) is given in Fig. 3.  

The stable nonlinear plant is identified by a KF 

RNN model with topology, given by equations (1)-(9) 

learned by the stable BP-learning algorithm, given by 

equations (10)-(21), where the identification error 

tends to zero. The simplification and linearization of 

the neural identifier equations (1)-(9), omitting the 

DY(.) leads to the next local linear plant model, 

extracted from the complete KF RNN model: 

X(k+1) = A1X(k) + BU(k)      (22) 

Z(k) = H X(k); H = C G’(Z)    (23) 

where G’(.) is the derivative of the activation function 

and L = M, is supposed. 

In Ref. [9], the sliding surface is defined with respect 

to the states variables and the SMC objective is to 

move the states form an arbitrary space position to the 

sliding surface in finite time. In Ref. [10], the sliding 

surface is also defined with respect to the states but the 

states of a SISO system are obtained from the plant 

outputs by differentiation. In Ref. [11], the sliding 

surface definition and the control objectives are the 

same. The equivalent control systems design is done 

with respect to the plant output, but the reach ability of 

the stable output control depended on the plant 

structure.  

In Ref. [2], the sliding surface is derived directly 

with respect to the plant outputs which facilitated the 

equivalent SMC systems design. 
 

 
Fig. 3  Block — diagram of the control system containing 
KF RNN identifier and a sliding mode controller (SMC). 
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Let us define the following Sliding Surface (SS) as 

an output tracking error function: 

( ) ( ) ( )
P

i
i 1

S k 1 E k 1 E k i 1γ
=

+ = + + − + , |γi | < 1 (24) 

where: S(.) is the Sliding Surface Error Function (SSEF) 

defined with respect to the plant output; E(.) is the 

systems output tracking error; γi are parameters of the 

desired stable SSEF; P is the order of the SSEF. The 

tracking error and its iterate are defined as: 

E(k) = R(k) −Z(k); E(k+1) = R(k+1) −Z(k+1)  (25) 

where R(k), Z(k) are L-dimensional reference and 

output vectors of the local linear plant model. The 

objective of the sliding mode control systems design is 

to find a control action which maintains the systems 

error on the sliding surface which assure that the output 

tracking error reaches zero in P steps, where P < N. So, 

the control objective is fulfilled if: 

S(k+1) = 0                (26) 

Now, let us to iterate (23) and to substitute (22) in it 

so to obtain the input/output local plant model, which 

yields: 

Z(k+1) = H X(k+1) = H [AX(k) + BU(k)]  (27) 

From equations (24), (25), and (26) it is easy to 

obtain: 

( ) ( )
P

i
i 1

R k+1 -Z(k+1) E k i 1 0γ
=

+ − + =    (28) 

The substitution of (27) in (28) gives: 

( ) ( )
P

i
i 1

R k 1 HAX(k) HBU(k) E k i 1 0γ
=

+ − − + − + =  (29) 

As the local approximation plant model (22), (23), is 

controllable, observable and stable, (see the preceding 

paragraph), the matrix A1 is diagonal, and L = M, then 

the matrix product (HB), representing the plant model 

static gain, is nonsingular, and the plant states X(k) are 

smooth non-increasing functions. Now, from equation 

(29), it is easy to obtain the equivalent control capable 

to lead the system to the sliding surface which yields: 

( ) ( ) ( ) ( ) ( )
P

1

eq i
i 1

U k HB [ HAX k R k 1 E k i 1]γ−

=

= − + + + − + (30) 

Following Ref. [9], the SMC avoiding chattering is 

taken using a saturation function instead of sign one. 

Here the saturation level Uo is chosen with respect to 

the load level perturbation. So the SMC takes the form: 

Ueq(k), if ||Ueq(k)|| < Uo 

U*(k) =                                    (31) 

-Uo Ueq(k)/||Ueq(k)||, if ||Ueq(k)|| ≥ Uo  i = 1 

It is easy to see that the substitution of the equivalent 

control (30) in the linear plant model (22), (23) showed 

an exact complete plant dynamics compensation which 

avoided oscillations, so that the chattering effect is not 

observed. Furthermore, the designed plant output 

sliding mode equivalent control substituted the 

multi-input multi-output coupled high order dynamics 

of the linearized plant with desired decoupled low 

order one. 

3. Description of the Biodegradation Process 
in a Rotating Drum 

Biological treatment is attractive as a potentially 

low-cost technology, which converts toxic organic 

contaminants into CO2 and biomass. Since the 70’s, 

this technology has been applied for the hydrocarbon 

degradation, and today, it is considered as the best 

alternative to clean up polluted soils. For this 

bioprocess, one challenge is to provide enough O2 and 

nutrients to enable rapid conversion of contaminants by 

either indigenous microorganisms or inoculated 

species. Another challenge is to achieve efficient 

contact between the active micro-organisms and the 

contaminants, which may represented a problem with 

in-situ treatment. An attractive alternative to overcome 

this problem is to apply a biological treatment in slurry 

phase using Horizontal Rotating Drum (HRD) (Fig. 4). 

The HRD can effectively mix heterogeneous blends 

of a wide range of particle sizes, and high solid 

concentration (more than 60%). The HRD operated 

with oxygen supply or aeration. Independently of the 
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Fig. 5  Learning pattern for the KF RNN training. 
 

and containing 19 points each (one per day). The total 

time of learning is 200 epochs, where the epoch size, 

corresponding to the number of data, is 76 iterations. 

After each epoch of training, the 4 sets are interchanged 

in an arbitrary manner from one epoch to another. The 

learning is stopped when the MSE% of learning and 

generalization reached values below 2%, and the 

relationship |ΔWij(k)|/|Wij(k)|*100% reached values 

below or equal of 2% for all updated parameters. 

Graphical results of RNNM training are given in Fig. 6 

for the last epoch of learning. In the graphics, the 

output variables of the RNNM are compared with the 

experimental data. 

The Fig. 6a, b, c compared the 4 kinetics 

experimental data with those, issued by the RNNM. 

The output process data of 76 points are the 

hydrocarbon residual, the water requirements and the 

soil viscosity. The Fig. 6d represents the evolution of 

the mean squared error of approximation for whole 

learning process of 200 epochs. An unknown set of 

kinetic data, containing 19 points and repeated 4 times, 

so to maintain the same 76-points epoch size, is used as 

a validation (generalization) set, and these results are 

given on Fig. 7. The obtained graphical results of 

RNNM training and generalization shows a good 

convergence with an MSE% below 1.5% for learning 

and 2% for the generalization. 

4.3 Simulation Results of SMC Using the Identified 

Parameters and States 

The simplified process model has been used to 

design a SMC system. The RNNM particular model 

has two inputs (AW, VA), two outputs (EW, RH) and 

nine states. The SSEF is chosen as a first order one (p = 

1) with parameters Uo = 1, γ = 0.07, L = M = 2. The 

control variables (AW, VA) are given on Fig. 8 for 76 

points. The graphical simulation results of the 

controlled system outputs (EW, RH), and the MSE%, 

also for 76 points, are given on Fig. 9. 
 

 
Fig. 6  Graphical results of KF RNN learning: a) EW; b) 
RH; c) VISC; d) MSE%. 
 

 
Fig. 7  Graphical results of KF RNN generalization. a) EW; 
b) RH; c) VISC; d) MSE%. 
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Fig. 8  Graphical results of SMC. a) VA; b) AW. 
 

 
Fig. 9  Graphical results of SMC. a) EW; b) RH; c) MSE%. 
 

The two system set points (continuous line) are 

compared with the plant outputs (EW, RH) (data point 

line) and are plotted subsequently for four sets of 

set-point data. The obtained MSE% of control at the 

end of the process is below 1%. The behavior of the 

control system in the presence of 5% white Gaussian 

noise added to the plant output has been studied 

accumulating some statistics of the final MSE% (ξav) 

for multiple run of the control program, which results 

are given on Table 1 for 20 runs.  

 
 
 

Table 1  Final means squared error (%) of control (ξav) for 
20 runs of the control program. 

No 1 2 3 4 5 

MSE% 0.6434 0.6577 0.7669 0.6805 0.6662

No 6 7 8 9 10 

MSE% 0.5757 0.5835 0.7043 0.7040 0.6350

No 11 12 13 14 15 

MSE% 0.6602 0.7759 0.7732 0.6566 0.6408

No 16 17 18 19 20 

MSE% 0.6481 0.6061 0.7240 0.6514 0.5725
 

The mean average cost for all runs (ε) of control, the 

standard deviation (σ) with respect to the mean value 

and the deviation (Δ) are given by the following 

formulas: 

1

1
k

n

avkn
ε ξ

=
= Σ

 

2

1

1 n

i
in

σ
=

= Σ Δ
     (32) 

= - avξ εΔ ; ε  = 0.6663 %; σ= 0.0593%  (33) 

where: k is the run number and n is equal to 20. 

5. Conclusion 

This paper proposes a new full order observer-filter 

RNNM with closed loop topology for state and 

parameter estimation and measurement noise filtering 

of hydrocarbon degradation process carried out in a 

rotating drum system. The proposed KF RNNM has six 

inputs, three outputs and nine neurons in the hidden 

layer, with global and local feedbacks. The BP learning 

algorithm is derived using the diagrammatic method 

and the adjoined RNNM. Then the obtained RNNM is 

simplified and used to design a SMC. The RNNM 

particular model has two inputs (AW, VA), two outputs 

(EW, RH) and nine states. The SSEF is chosen as a first 

order one (p = 1) with parameters Uo = 1, γ = 0.07, L = 

M = 2. The experimental and simulation identification 

and control results obtained exhibited a good 

convergence and precise reference tracking. The MSE% 

of the KF RNNM learning and generalization is below 

1.5% (2% for generalization) and the MSE% of control 

is below 1%. The behavior of the control system in the 

presence of 5% white Gaussian noise added to the plant 

output has been studied accumulating some statistics of 
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the final MSE% (ξav) for multiple run of the control 

program, which results are given on Table 1 for 20 runs. 

The mean average cost for all runs (ε) of control, the 

standard deviation (σ) with respect to the mean value 

and the deviation (Δ) are obtained as  = - avξ εΔ ; ε 

= 0.6663%; σ = 0.0593%. The results could be 

improved augmenting the number of measurement 

points per fermentation and augmenting the number of 

fermentations per epoch. 
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