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Abstract: Biological treatment is attractive as a potentially low-cost technology, which converts toxic organic contaminants into CO,
and biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation, and today, it is considered as the best
alternative to clean up polluted soils. For this bioprocess, one challenge is to provide enough O, and nutrients to enable rapid
conversion of contaminants by either indigenous microorganisms or inoculated species. Another challenge is to achieve efficient
contact between the active micro-organisms and the contaminants, which may represented a problem with in-situ treatment. An
attractive alternative to overcome this problem is to apply a biological treatment in slurry phase using Horizontal Rotating Drum (HRD).
Nowadays, semi empirical HRD models, based on the Monod equation, have been developed to predict micro-organism growth as a
function of available contaminants concentration. However, as the application of such models requires experimental work for
calculating the kinetics parameters involved, so an alternative modeling technique is required. The Kalman Filter Recurrent Neural
Network Model (KF RNNM) offers many advantages as the possibility to approximate complex non linear high order multivariable
processes, as the biodegradation process is. The KF RNNM has been applied for measurement data filtering and parameters plus state
estimation of hydrocarbons biodegradation process, contained in polluted slurry, treated in a rotating bioreactor. Then the KF RNNM is
simplified and used to design a Sliding Mode Control (SMC) of two-input two-output high order nonlinear plant. The KF RNNM
learning algorithm is the dynamic Backpropagation one (BP). The graphical simulation results of the system approximation, and
indirect adaptive neural control, exhibited a good convergence, and precise reference tracking.

Key words: hydrocarbon biodegradation bioprocess, horizontal rotating drum, identification and sliding mode control, Kalman filter
recurrent neural network

complex non-linear relationships without prior

1. Introduction
knowledge of the model structure makes them a very

The Recent advances in understanding of the
working principles of artificial neural networks has
given a tremendous boost to identification, prediction
and control tools of nonlinear systems [1-4]. The main
network property namely the ability to approximate

Corresponding author: Ieroham Solomon Baruch, Ph.D.,
Associate Professor, research areas/interests: recurrent neural
networks for identification and adaptive control of nonlinear
plants. E-mail: baruch@ctrl.cinvestav.mx.

attractive alternative to the classical modelling and
control techniques. This property has been proved by
the universal approximation theorem [5]. Among
several possible network architectures the ones most
widely used are the feed forward and the recurrent
neural networks. In a feed-forward neural network the
signals are transmitted only in one direction, starting
from the input layer, subsequently through the hidden
layers to the output layer, which requires applying a tap
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delayed global feedbacks and a tap delayed inputs to
achieve a nonlinear autoregressive moving average
neural dynamic plant model. A recurrent neural
network has local feedback connections to some of the
previous layers. Such a structure is suitable alternative
to the first one when the task is to model dynamic
systems, and the universal approximation theorem has
been proved for the recurrent neural networks too. The
preferences given to recurrent neural network
identification with respect to the classical methods of
process identification are clearly demonstrated in the
dilemma” [5].

Furthermore, the derivation of an analytical plant

solution of the “bias-variance
model, the parameterization of that model and the
Least Square solution for the unknown parameters
have the following disadvantages: (a) the analytical
model did not include all factors having influence to
the process behavior; (b) the analytical model is
derived taking into account some simplifying
suppositions which not ever match; (c) the analytical
model did not described all plant nonlinearities, time
lags and time delays belonging to the process in hand;
(d) the analytical model did not include all process and
measurement noises which are sensor and actuator
dependent. In Ref. [6] the method of invariant
imbedding has been described. This method seemed to
be a universal tool for simultaneous state and parameter
estimation of nonlinear plants but it suffer for the same
drawbacks because a complete nonlinear plant model
description is needed.

So, the unknown nonlinear technological processes
needed a new tool for modeling and identification
capable to correlate experimental data and to estimate
parameters and states in the same time, processing
noisy measurements. Such efficient tool is the Kalman
Filter Recurrent Neural Network (KF RNN), where the
estimated parameters and states could be used directly
for control [3, 7].

2. Recurrent Neural Network M ethodology
for Plant Modeling

2.1 Kaman Filter Recurrent Neural Network

Topology and Learning

Block-diagrams of the Kalman Filter Recurrent
Neural Network (KF RNN) model and its adjoined, are
given in Fig. 1 and Fig. 2. Following Fig. 1 and Fig. 2,
we could derive the dynamic Backpropagation (BP)
algorithm of its learning using the diagramatic method
[8].

Denoting by X, Y, U the state, output, and
augmented input vectors with dimensions N, L, (M+1)
and by Z the (L+1) — dimensional input of the
feed-forward output layer, we can write the following

equations for the KF RNN topology and learning:

X(k+1) = A; X(k)+BU(k)-DY (k) (1)
B =[B;By; U' = [Uy;U2] ©)
A= block-diag (A1), |A1i[<] 3)
Zy(k) = G[X(K)] “4)
C =[Ci;Col; 2" = [Z15Z2] ()

Vi(k) = CZ(k) (6)
V(k+1) = Vi(k) + A, V(K) 7
A, =block-diag(A,;), |Azi[<1 ®)
Y (k) =F[V(k)] ©)

W(k+1) = WK)MAW(K)+aAW(k-1); [Wy[<Wo (10)
E(k) = Yq()-Y(k); Ei(k) = F'[Y(K)] E(k)  (11)

FIY(K)] = [1-Y*(K)] (12)

AC(k) = Ei(K)Z'(k) (13)
AAyK) = Ei(K)V' (k) (14)
Vec(AAx(K)) = Ei(k)eV(k) (15)

E3(k) = G’[Z(K)] Ex(k); Ea(k) = C(k) Ey(k) (16)
G’[Z(®)] = [1-Z*(K)] (17)

AB(k) = E3(k)U"(k) (18)

AD(k) = E3(K)Y'(k) (19)

AA (k) = Es(k)X'(k) (20)

Vec(AA (k) = E3(k)-X (k) 1)

Fig. 1 Block-diagram of the KF RNN model.
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Fig. 2 Block-diagram of the adjoined KF RNN model.

where: Z; and U, are the (Nx1) output and (Mx1) input
of the hidden layer; the constant scalar threshold entries
are Z, = -1, U, =
pre-synaptic activity of the output layer; the super-index

-1, respectively; V is a (Lx1)

T means vector transpose; A, Ajare (NxN) and (LxL)
block-diagonal weight matrices; B and C are [Nx(M+1)]
and [Lx(N+1)] — augmented weight matrices; B, and
Cy are (Nx1) and (Lx1) threshold weights of the hidden
and output layers; F[.], G[.] are vector-valued tanh(.) or
sigmoid(.) — activation functions with corresponding
dimensions; F’[.], G’[.] are derivatives of the tanh(.) or
sigmoid activation functions; W is a general weight,
denoting each weight matrix (C, A, Ay, B, D) in the KF
RNN model, to be updated; AW (AC, AA,, AA,, AB,
AD), is the weight correction of W; Y4 is an
L-dimensional output of the approximated plant taken as
a reference for KF RNN learning; 1, o are learning rate
parameters; AC, AB, AD, AA;, AA, are weight
corrections of C, B, D, A;, A, respectively; the
diagonals of the matrices A, A, are denoted by Vec
(A1(k)), Vec (Az(k)), respectively, where equations (15),
(21) represented their learning as an element-by-element
vector products; E, E;, E,, E3, are error vectors (see Fig.
2), predicted by the adjoined KF RNN model. The
stability of the KF RNN model is assured by the
activation functions [-1, 1] bounds and by the local
stability weight bound conditions given by equations (3),
(8). Here the input vector U and the input matrix B of the
KF RNN are augmented so to fulfill the Kalman Filter
requirements and the matrix D corresponded to the
feedback gain matrix of the KF. The KF RNN is learnt
applying the BP learning algorithm which is in fact an
unrestricted optimization procedure, derived using the
adjoined KF RNN (see Fig. 2) based on the Separation
theorem [6], and the diagrammatic method [8§].

2.2 KF RNN Methodology of Plant Identification and
Siding Mode Control

The block-diagram of the indirect adaptive neural
control using the KF RTNN as plant identifier and a
Sliding Mode Controller (SMC) is given in Fig. 3.

The stable nonlinear plant is identified by a KF
RNN model with topology, given by equations (1)-(9)
learned by the stable BP-learning algorithm, given by
equations (10)-(21), where the identification error
tends to zero. The simplification and linearization of
the neural identifier equations (1)-(9), omitting the
DY(.) leads to the next local linear plant model,
extracted from the complete KF RNN model:

X(k+1) = A1 X(k) + BU(k) (22)

Z(k) = H X(k); H=C G’(2) (23)
where G’(.) is the derivative of the activation function
and L = M, is supposed.

In Ref. [9], the sliding surface is defined with respect
to the states variables and the SMC objective is to
move the states form an arbitrary space position to the
sliding surface in finite time. In Ref. [10], the sliding
surface is also defined with respect to the states but the
states of a SISO system are obtained from the plant
outputs by differentiation. In Ref. [11], the sliding
surface definition and the control objectives are the
same. The equivalent control systems design is done
with respect to the plant output, but the reach ability of
the stable output control depended on the plant
structure.

In Ref. [2], the sliding surface is derived directly
with respect to the plant outputs which facilitated the
equivalent SMC systems design.

8, 6:
R(k) L 7 -
—1 4 v +y Vo)
—» SMC ?é »  PLANT ié
3
= Yk)y ty
» KF RNN D
| N

Parameters + states

Fig. 3 Block — diagram of the control system containing
KF RNN identifier and a sliding mode controller (SMC).
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Let us define the following Sliding Surface (SS) as

an output tracking error function:

P

S(k+1)=E(k+1)+>_yE(k—i+1), [y | <1 (24)

i=l

where: S(.) is the Sliding Surface Error Function (SSEF)
defined with respect to the plant output; E(.) is the
systems output tracking error; y; are parameters of the
desired stable SSEF; P is the order of the SSEF. The
tracking error and its iterate are defined as:

E(k) = R(k) —Z(k); E(k+1) = R(k+1) —Z(k+1) (25)
where R(k), Z(k) are L-dimensional reference and
output vectors of the local linear plant model. The
objective of the sliding mode control systems design is
to find a control action which maintains the systems
error on the sliding surface which assure that the output
tracking error reaches zero in P steps, where P <N. So,
the control objective is fulfilled if:

S(k+1) =0 (26)

Now, let us to iterate (23) and to substitute (22) in it
so to obtain the input/output local plant model, which
yields:

Z(k+1)=H X(k+1) =H [AX(k) + BU(k)] (27)
From equations (24), (25), and (26) it is easy to
obtain:

P
R(k+1)-Z(k+1)+ > #E(k—-i+1)=0 (28

i=l

The substitution of (27) in (28) gives:

P
R(k+1)—HAX(k)-HBU(k)+ > ¥E(k—i+1)=0 (29)
i=
As the local approximation plant model (22), (23), is
controllable, observable and stable, (see the preceding
paragraph), the matrix A is diagonal, and L = M, then
the matrix product (HB), representing the plant model
static gain, is nonsingular, and the plant states X(k) are
smooth non-increasing functions. Now, from equation
(29), it is easy to obtain the equivalent control capable
to lead the system to the sliding surface which yields:

U, (K)=(EB)” [HAX(K)+R (k1 + Y 7E(k-i+1]30)

1=l

Following Ref. [9], the SMC avoiding chattering is
taken using a saturation function instead of sign one.
Here the saturation level Uo is chosen with respect to
the load level perturbation. So the SMC takes the form:

Ueg®), if U] < Uo
U*(k) ={ 31)

-Uo Ueg(k)/|[Ueq(K)|, if [Ueq(k)| 2 U0 i=1

It is easy to see that the substitution of the equivalent
control (30) in the linear plant model (22), (23) showed
an exact complete plant dynamics compensation which
avoided oscillations, so that the chattering effect is not
observed. Furthermore, the designed plant output
substituted the
multi-input multi-output coupled high order dynamics

sliding mode equivalent control

of the linearized plant with desired decoupled low

order one.

3. Description of the Biodegradation Process
in a Rotating Drum

Biological treatment is attractive as a potentially
low-cost technology, which converts toxic organic
contaminants into CO, and biomass. Since the 70’s,
this technology has been applied for the hydrocarbon
degradation, and today, it is considered as the best
alternative to clean up polluted soils. For this
bioprocess, one challenge is to provide enough O, and
nutrients to enable rapid conversion of contaminants by
either indigenous microorganisms or inoculated
species. Another challenge is to achieve efficient
contact between the active micro-organisms and the
contaminants, which may represented a problem with
in-situ treatment. An attractive alternative to overcome
this problem is to apply a biological treatment in slurry
phase using Horizontal Rotating Drum (HRD) (Fig. 4).

The HRD can effectively mix heterogeneous blends
of a wide range of particle sizes, and high solid
concentration (more than 60%). The HRD operated

with oxygen supply or aeration. Independently of the
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ROTATING DRU

MOTOR.
Fig. 4 Schematic diagram of arotating drum system.

type of HRD operation (open or close), the
insufficiency of water decreased the efficiency of
in HRD favoring the

formation of hydrocarbon balls [12, 13]. So one

hydrocarbon degradation

objective of the process control is to maintain the
humidity at 60%, which is the maximal solid
concentration determined as the best for hydrocarbon
removal from polluted soils treated in open rotating
slurry bioreactors [14]. Nowadays, semi empirical
models, based on the Monod equation, have been
developed to predict micro-organism growth as a
function of available contaminants concentration.
However, as the application of such models requires
experimental work for calculating the Kkinetics
parameters involved, so an alternative modelling
technique is required. The RNNM offers many
advantages as the possibility to approximate complex
non linear high order multivariable processes, as the
biodegradation process is. The bioremediation of
polluted soils selected for modelling purpose was
carried out by bio-stimulation in slurry phase using an
open HRD. A silt loam (sand 36.5% w/w, silt 62.5%
w/w and clay 1% w/w) soil of an average diameter of
15 pum, particle diameter in the range 2-75 pum, was
used [14]. The soil was contaminated with 50000 ppm
of crude oil collected from a contaminated zone located
near from a petroleum refinery. The slurry was
prepared with 40% weight of soil (715 g) and 60%
weight of a mineral solution (formula in kg-m™:
(NH4),S0y4, 19; KH,PO4, 1.7; MgSOQ,, 1; CaCl,-2H,0,
0.005; FeCl;-6H,0, 0.0025; yeast extract, 0.59; tergitol
-0.5%), (for more details, see Reg. [14]). The slurry
was added to a HRD of 4 litters (13 cm diameter by 30

cm long), which was opened, on the flat faces, for a

natural air supply (see Fig. 4). The drum was operated
during 19 days at a fix turning in the interval 3.5-20
RPM. During this time, the reactor was daily weight in
order to replace the water lost, so to maintain constant
the water concentration. Samples were removed each
day for analysis of residual hydrocarbons, pH, water
concentration and slurry viscosity. The hydrocarbon
concentration was determined by an infrared
spectrometer; the pH was measured with a Beckman ®
potentiometer; water concentration was calculated by
difference of two sequence data of the drum weight;
finally, slurry viscosity was measured with an AND
Vibro-viscometer SV-10 (MED BY A&D LTD). The
biodegradation process was repeated at a different
turning value (3.5, 5, 7.5, 10, 15, 20 RPM) in order to

vary the oxygen available into the HRD.
4. Experimental and Simulation Results
4.1 Learning Pattern of KF RNN Training

The learning pattern (Fig. 5), used for RNNM
training is composed by six input variables and three
output variables. In order to avoid saturation problems
in the RNNM training, the variables of the learning
pattern are normalized in the interval 0-1.

The measured variables are: Residual Hydrocarbon
Concentration (RH), Evaporated Water (EW); Soil
Viscosity (VISC), Added Water (AW); Temperature
(T); Velocity of Agitation (VA). The RNNM outputs
are: OUT (RH, EW, VISC). Depending on the
available measurements and the control objectives, this
model could be simplified, where the input/output
pattern is chosen as: ILP (RH, EW, AW, VA); OLP
(RH, EW). This reduced model is used for sliding
model control system design.

4.2 KF RNN HRD Identification and Sate Estimation
Using Experimental Data

The described above learning algorithm is applied
simultaneously to 4 fermentation kinetic data,

represented by its input/output learning data patterns,
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RH
EW
VISC
AW
T

RNNM

RH
EW
VISC

VA
Fig. 5 Learning pattern for the KF RNN training.

and containing 19 points each (one per day). The total
time of learning is 200 epochs, where the epoch size,
corresponding to the number of data, is 76 iterations.
After each epoch of training, the 4 sets are interchanged
in an arbitrary manner from one epoch to another. The
learning is stopped when the MSE% of learning and
generalization reached values below 2%, and the
relationship [AW;;(k)|/|W;i(k)[*100% reached values
below or equal of 2% for all updated parameters.
Graphical results of RNNM training are given in Fig. 6
for the last epoch of learning. In the graphics, the
output variables of the RNNM are compared with the
experimental data.

The Fig. 6a, b, ¢ compared the 4 Kkinetics
experimental data with those, issued by the RNNM.
The output process data of 76 points are the
hydrocarbon residual, the water requirements and the
soil viscosity. The Fig. 6d represents the evolution of
the mean squared error of approximation for whole
learning process of 200 epochs. An unknown set of
kinetic data, containing 19 points and repeated 4 times,
so to maintain the same 76-points epoch size, is used as
a validation (generalization) set, and these results are
given on Fig. 7. The obtained graphical results of
RNNM training and generalization shows a good
convergence with an MSE% below 1.5% for learning
and 2% for the generalization.

4.3 Smulation Results of SMC Using the Identified
Parameters and Sates

The simplified process model has been used to
design a SMC system. The RNNM particular model
has two inputs (AW, VA), two outputs (EW, RH) and
nine states. The SSEF is chosen as a first order one (p =
1) with parameters Uo = 1,y = 0.07,L = M = 2. The
control variables (AW, VA) are given on Fig. 8 for 76

points. The graphical simulation results of the
controlled system outputs (EW, RH), and the MSE%,
also for 76 points, are given on Fig. 9.

1

EW a)
0s¢ i
RH
VISC
MSE ' I I I {l)_
(%) 025 L
0

0 a0 100 150 200
Fig. 6 Graphical results of KF RNN learning: a) EW; b)

RH; ¢) VISC; d) MSE%.

1

EW ' ' - D
0Aak E
D 1 1
a 20 a0 B0 a0
RH ' ' ' D)
0Aak E
0 ) ) . i
a 20 a0 B0 0
VISC '

MSE
(%) o5t |

0
0 50 100 150 200
Fig. 7 Graphical resultsof KF RNN generalization. a) EW,;

b) RH; ¢) VISC; d) MSE%.
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VADS - . - Table 1l Final meanssquared error (%) of control (&,,) for
ﬂ) 20 runs of the control program.
02t i No 1 2 3 4 5
MSE% | 0.6434 | 0.6577 | 0.7669 | 0.6805 | 0.6662
0 . . . No 6 7 8 9 10
0 20 40 B0 a0 MSE% | 0.5757 | 0.5835 | 0.7043 | 0.7040 | 0.6350
1,&1;,‘:':'-5 : - : IJ-) No 11 12 13 14 15
- 04 ] MSE% | 0.6602 | 0.7759 | 0.7732 | 0.6566 | 0.6408
No 16 17 18 19 20
0.3 1 MSE% | 0.6481 | 0.6061 | 0.7240 | 0.6514 | 0.5725
02¢ .
1 L : The mean average cost for all runs (€) of control, the
0 20 40 B0 ad

Fig. 8 Graphical resultsof SMC. a) VA; b) AW.

EW
RH
05 :
|:| 1 1 1
0 20 40 B0 a0
0.2 9
MSE
(%) 0.1 .

I:I 1 L
l 1o 20 30 40 a0 B0
Fig. 9 Graphical resultsof SMC. a) EW; b) RH; ¢) MSE%.

The two system set points (continuous line) are
compared with the plant outputs (EW, RH) (data point
line) and are plotted subsequently for four sets of
set-point data. The obtained MSE% of control at the
end of the process is below 1%. The behavior of the
control system in the presence of 5% white Gaussian
noise added to the plant output has been studied
accumulating some statistics of the final MSE% (&,,)
for multiple run of the control program, which results

are given on Table 1 for 20 runs.

standard deviation (o) with respect to the mean value
and the deviation (A) are given by the following

formulas:

1 n n
€=—2C\ 0= |-ZA
nk= ni= (32)

A =& - € e = 06663 %; o= 0.0593% (33)

where: k is the run number and n is equal to 20.

5. Conclusion

This paper proposes a new full order observer-filter
RNNM with closed loop topology for state and
parameter estimation and measurement noise filtering
of hydrocarbon degradation process carried out in a
rotating drum system. The proposed KF RNNM has six
inputs, three outputs and nine neurons in the hidden
layer, with global and local feedbacks. The BP learning
algorithm is derived using the diagrammatic method
and the adjoined RNNM. Then the obtained RNNM is
simplified and used to design a SMC. The RNNM
particular model has two inputs (AW, VA), two outputs
(EW, RH) and nine states. The SSEF is chosen as a first
order one (p = 1) with parameters Uo=1,y=0.07,L =
M = 2. The experimental and simulation identification
and control results obtained exhibited a good
convergence and precise reference tracking. The MSE%
of the KF RNNM learning and generalization is below
1.5% (2% for generalization) and the MSE% of control
is below 1%. The behavior of the control system in the
presence of 5% white Gaussian noise added to the plant

output has been studied accumulating some statistics of
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the final MSE% (&,,) for multiple run of the control
program, which results are given on Table 1 for 20 runs.
The mean average cost for all runs (€) of control, the

standard deviation (o) with respect to the mean value

and the deviation (A) are obtained as A :fav- €e

= 0.6663%; o = 0.0593%. The results could be
improved augmenting the number of measurement
points per fermentation and augmenting the number of

fermentations per epoch.
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