
Journal of Modern Education Review, ISSN 2155-7993, USA
May 2015, Volume 5, No. 5, pp. 470–480
Doi: 10.15341/jmer(2155-7993)/05.05.2015/005
 Academic Star Publishing Company, 2015
http://www.academicstar.us

470

A Didactic Model for Developmental Training in Computer Science

Sava Grozdev1, Todorka Terzieva2 

(1. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria;

2. Department of Software Technologies, Faculty of Mathematics and Informatics, Plovdiv University Paisii Hilendarski, Bulgaria)

Abstract: The paper presents a didactic model based on Bloom’s expanded taxonomy of learning and

developed for a formation of algorithmic thinking and implementation of developmental training in Computer

Science for first-year students. The fundamental elements of this model of the learning process are the actions

which occur during the course. An educational environment and teaching technology for formation of algorithmic

thinking was created through a system of learning tasks. Emphasis was placed on the formation and development

of skills for understanding and implementation of algorithms, skills for modeling and skills for analyzing

algorithms. Criteria and indicators for the diagnostics of the experiment results were developed. Didactic tests

were created and probed. The pedagogical experiment was conducted with underground majors in Informatics in

the Faculty of Mathematics and Informatics of Plovdiv University, Bulgaria. The following conclusion was

derived from the results of the experiment — programming is a specific type of human activity whose successful

implementation requires not only practical application of knowledge and skills but also a specific type of thinking.

Key words: computer science education, programming, algorithmic thinking, developmental training

1. Introduction

 The dynamic development of information technologies has led to the creation and modification overtime of a

significant number of programming languages with different areas of application and use.

The study of programming languages is traditionally associated with the specification of its syntax and

semantics, illustrated with examples. Usually in training we use a particular version of language and programming

tools.

The practical orientation of the training results in rapid absorption of skills is valid only in a specific context.

The lack of a general approach to learning programming languages makes the process of understanding in

learning more difficult, which prevents a wider use of already adopted languages — for example, in developing

skills for implementing a new programming language or a new version of an already studied one. On the other

hand, practical examples confirm the fact that after mastering two or three programming languages

comprehension and understanding of a new programming language is easier. According to researchers, as a result

Sava Grozdev, Ph.D. in Mathematics and DSc in Pedagogical Sciences, Professor, Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences; research areas/interests: education, didactics, mathematical analysis, operational calculus, synergetic.
E-mail: sava.grozdev@gmail.com.

Todorka Terzieva, Ph.D. in Pedagogy of Education in Informatics and Information Technology, Head Assistant Professor,
Department of Software Technologies, Faculty of Mathematics and Informatics, Plovdiv University Paisii Hilendarski; research
areas/interests: teaching methodology informatics and information technology, algorithms and data structures, programming
languages, distance learning. E-mail: terzieva.dora@gmail.com.

A Didactic Model for Developmental Training in Computer Science

 471

of experience and skills, one creates a common pattern in his or her mind, which in cognitive science is referred to

as conceptual model, thus facilitating the acquisition of new programming languages.

2. Algorithmic Thinking — A Key Competence in Computer Science

In the transition towards information society, within the conditions of constant interaction with computer

systems, the algorithmic style of thinking is a necessary basis for the performance of every modern personality.

The problem solving is inherent to every scientific field and academic discipline. Moreover, each scientific field is

defined by the specifics of the problems it addresses, as well as by the methodology it uses for the solving process

itself.

As a result of a conducted research (Grozdev, 2011), observation and study of the scientific literature on

methodology (Cormen, 1990; Gazeykina, 2004; Milne, 2002; Kolczyk, 2008; Snyder, 2006; Wing, 2006;

Vorontsova, 2010) and cognitive psychologies (Piaget, 1983), we came to the following conclusions:

programming is a specific type of human activity and its successful realization requires not only practical

application of knowledge and skills but also a specific type of thinking. On the other hand the new and rapidly

changing content of informatics teaching requires the development of methods which can ensure not only

reproduction of a great amount of knowledge but most of all forming and developing of student competences,

which allow them to master the knowledge actively, and also building of skills for independent acquisition of new

knowledge and its critical rationalization.

The development of thinking in the learning process means forming and perfecting of all types, forms and

operations of thinking, development of skills and habits of applying the laws of thought in the cognitive and

learning activities, as well as habits to transfer the intellectual activity methods from one area of knowledge to

another (Andreev, 1996). Most generally, the schematic and the intellectual development of the student may be

described and understood through the categories of knowledge — thinking — ability and motivation of the mental

self-development. Knowledge is a necessary condition for correct and sufficient thinking processes — comparison,

analysis and synthesis, generalization and concretization. The correct management of these processes contributes

to perfecting and enrichment of the knowledge. Therefore, thinking may develop when there exists a certain

amount of acquired knowledge.

We can define algorithmic thinking as a way of thinking, which provides a solution for a specific task through

a succession of elementary actions (Grozdev, 2011). Algorithmic thinking consists of a wide range of abilities and

is affected by many other cognitive factors. The initial course on informatics must introduce students to the

technology of design, developing and application of computer programs, creating habits, which may be applied

and developed while studying other informatics disciplines. At the same time, the introductory courses must

present the basic intellectual aspects of the computer science to students. The algorithmic thinking components are:

analyzing — determining the initial condition, target, hypothesis and limitations; decomposition — dividing the

problem to sub-problems and determining the basic solution operations; formalization in order to create a model

— reformulating the problem with computer science terms, creating an algorithm and defining the relation

between the subtasks; comprehension and applying formal ways for recording the algorithms; execution of a

certain algorithm through formal and precise execution of the main activities; algorithm analysis in order to

determine the optimal solution; modification of already familiar algorithms for their application in new conditions;

creation of a new (unknown) algorithm.

A Didactic Model for Developmental Training in Computer Science

 472

An important component of the level of algorithmic thinking is the ability to create an algorithm or the

application (use) of the algorithm in a new situation.

Algorithmic thinking has general and specific properties compared to other styles of thinking. Among the

general properties of the algorithmic thinking are integrity and performance, helping to see to a problem

comprehensively and involves the preliminary mental image of the decision. The specific properties relate to

discretion, abstraction, generalization, consisting of solving all the problems of a class skill for formalization -

dividing a difficult and complex problem into sub problems. These properties suggest a step process algorithm,

enable abstracting from specific input, and transition to a decision of a task in general form and presentation of the

algorithm using a formal language.

Algorithmic thinking consists of a wide range of abilities and is influenced by many other cognitive factors.

The initial course on computer science education must introduce the students to the technology of design,

developing and application of a computer program, must create habits which may be applied and developed while

learning other informatics-related disciplines. At the same time, the introductory courses must present the students

to the basic intellectual aspects of the computer science.

The fundamental elements of the model of the learning process are the actions which occur in the course. In

this sense, we share the view that a lot in training does not follow the complete volume of knowledge and training

materials that are available, but rather the activities of students in solving problems and formalization in order to

create a model — reformulating the problem with computer science terms, creating an algorithm and defining the

relation between the subtasks; comprehension and applying formal ways for recording the algorithms; execution

of a certain algorithm through formal and precise execution of the main activities; algorithm analysis in order to

determine the optimal solution; modification of the known algorithms for their application in new situations;

creation of a new (unknown) algorithm (Terzieva, 2011).

3. Structuring of Learning Objectives in Computer Science

The task of constructing a scheme for structuring the educational objectives was undertaken for the first time

in the USA. In 1956 Benjamin Bloom published his taxonomy of the educational objectives for cognitive

activities, which proved to be extremely valuable for the diagnostics of the results from educational work (Bloom,

1956). This theory bears the idea that the objectives and the outcomes of education are not the same. For example,

the memorizing of the scientific facts, regardless of their importance, is at a lower level than the skills for their

analyzing and evaluation. Bloom offers six levels: knowledge, comprehension, application, analysis, synthesis,

evaluation. Many cognitive psychologists work on the development of more precise and adequate taxonomy for

the basic cognitive conceptions and level of thinking.

The educational taxonomies, especially Bloom’s, for cognitive activity has a significant effect on the

development of instruction design in the last 60 years. Their application and use, however, creates a number of

difficulties. The classification of the learning outcomes and the tests outcomes depends on their context. A task,

which makes difficult the application of analysis and synthesis by a beginner in the field of educations, becomes

routine in the application of knowledge by more advanced trainees (Fuller, 2007). In the same way, a student, who

is trained how to solve problems, which are extremely similar to the given tests, will demonstrate skills, which are

at a lower level in the hierarchical taxonomy, than those demonstrated by a student, who has been solving

problems based on principles.

A Didactic Model for Developmental Training in Computer Science

 473

One of the hallmarks of psychological and educational theory and research on learning since the original

taxonomy was published so far emphasize on helping students become more knowledgeable of and responsible

for their own cognition and thinking. This change cuts across all the different theoretical approaches to learning

and development-from Piaget models to cognitive science and information processing models, to Vygotsky and

cultural or situated learning models. Regardless of their theoretical perspective, researchers agree that with

development students become more aware of their own thinking as well as more knowledgeable about cognition

in general (Pintrich, 2002).

These problems are common to all fields of education, but a number educators (Mikova, 2006; Snyder, 2006;

Rahnev, 2010) note that there also appear specific difficulties in the teaching of computer sciences, They have

established that the classical taxonomy is not suitable for evaluation of practical skills or for determining the

relevant difficulty of the cognitive tasks in the field of computer sciences. A significant number of researchers

believe that it is easier to apply the knowledge for solving simple problems than to describe this knowledge

(Grozdev, 2007). Moreover, they have established that computer science lecturers do not find the terms

“synthesis” and “evaluation” to be the most important in describing learning outcomes and in evaluation of the

tasks in programming courses, especially at the basic level of education. Instead, they see the application of

knowledge as the highest skill, which the trainees should develop.

In Bulgarian education, a special place is occupied by Bloom’s taxonomy associated to the cognitive domain,

which becomes the basis of the establishment of standards in the curriculum.

In 2001 Anderson and Krathwohl (Anderson, 2001) specify and develop the taxonomy suggested by Bloom,

emphasizing more on the creative paradigm, in which the intellectual development is studied as a change of the

thinking pattern of the trainees. The major differences lie in the more useful and comprehensive additions of how

the taxonomy intersects and acts upon different types and levels of knowledge — factual, conceptual, procedural

and metacognitive. This melding can be charted to see how one is teaching at both knowledge and cognitive

process levels.

3.1 Levels of Knowledge in Bloom’s Taxonomy Revised

The first three of these levels were identified in the original work, but rarely discussed or introduced when

initially discussing uses for the taxonomy. Metacognition was added in the revised version.

 Factual Knowledge — knowledge that is basic to specific disciplines. This dimension refers to essential

facts, terminology, details or elements students must know or be familiar with in order to understand a discipline

or solve a problem in it.

 Conceptual Knowledge — knowledge of classifications, principles, generalizations, theories, models, or

structures pertinent to a particular disciplinary area. The interrelationships among the basic elements within a

larger structure that enable them to function together.

 Procedural Knowledge — refers to information or knowledge that helps students to do something specific

to a discipline, subject, or area of study. It also refers to methods of inquiry and criteria for using skills, algorithms,

techniques, methods and particular methodologies.

 Metacognitive Knowledge — knowledge of cognition in general, as well as awareness and knowledge of

one’s own cognition. It is strategic or reflective knowledge about how to go about solving problems, cognitive

tasks, to include contextual and conditional knowledge and knowledge of self (Anderson, 2001).

A Didactic Model for Developmental Training in Computer Science

 474

The new taxonomy makes distinction between knowledge on what “contains the cognitive activity” and

knowledge on how, i.e., the procedures used for solving problems. The skill to combine elements in order to

obtain something new suggests creative activity for the creation of new schemes and structures. In the words of

one of the creators of the extended taxonomy, “You may be able to think critically — to support your position, to

draw conclusions etc., without having creative skills, but creative activity — to prove or reject ideas, to create new

ideas, often requires critical thinking” (Halpern, 1996).

4. Two-dimensional Framework of Study Goals in Extended Bloom’s Taxonomy

Although the taxonomy of Anderson and Krathwohl is not the only possible way to classify the levels of

thinking, it has a clear structure, facilitates the organization process of the intellectual development education,

starting with the initial stage of mastering techniques for thinking activity, transition towards intellectual

operations at a higher level and adopting habits for highly organized thinking. The cognitive objectives of the

extended taxonomy have universal nature and could be applied in programming teaching.

The schematic and the intellectual development of the student may be described and understood through the

categories of knowledge — thinking — ability and motivation of the mental self-development (Krathwohl, 2002).

The volume of the knowledge defines the horizon, the parameters, and the limits, on which the thoughts and the

fantasies of man spread. The knowledge is a necessary condition for correct and sufficient thinking processes —

comparison, analysis and synthesis, generalization and concretization. The correct management of these processes

contributes for perfecting and enrichment of the knowledge. Therefore, the thinking may develop when there is a

certain amount of acquired knowledge.

The revision of the original Bloom’s taxonomy is a two-dimensional framework: Knowledge and Cognitive

Processes. Therefore, every type of educational activities for the formation and development of algorithm thinking

can be introduced by using the two-dimensional framework of the extended Bloom’s taxonomy represented as a

combination of the type of knowledge and corresponding level of cognitive process (Table 1).

Table 1 Learning Activities for The Development of Algorithmic Thinking
Type of know

ledge
LEVELS OF COGNITIVE PROCESS

Remembering Under-standing Applying Analysis Evaluation Creation

Factual
Knowledge

 lists fundamental
concepts

 recognizes simple
primitive data
structures

 knows the basic
operations

 gives
examples of
the basic
concepts

 under-stands
the values of
program
objects

 explains the
relationship
between the
type of
concepts

 implements
simple data
structures

 applies
examples of
basic concepts

 reads values
and results of
basic
operations

 understands
the action of
basic
operations

 discovers
similarities and
differences
between
concepts

 compares two
objects
(standard data
types or
elementary
operations)

 discovers
similarities and
differences
between
standard data
structures

 indicates which
data types of are
used most often

 states which are
the most
important
concepts and
why

 locates syntax
errors

 locates criteria
for the
application of
standard
structures

 corrects syntax
errors

 defines a set of
input data for
the decision of
the task

(Table 1 to be continued)

A Didactic Model for Developmental Training in Computer Science

 475

(Table 1 continued)
Conceptual
Knowledge

 lists simple and
abstract data
structures

 specifies algorithm
properties

 recognizes abstract
data structures

 reads the
results of
different
actions

 classifies
concepts

 indicates the
implications
of facts and
limitations

 groups objects
 under-stands

basic concepts

 understands
the results of
different
actions

 uses standard
control
structures

 gives examples
of concepts
and structures

 discovers
properties of
algorithms

 reads and
explains
fragments of a
simple
program

 compares types
of data
structures

 explains
differences,
lists results of
various actions

 compares
alternative
representation
of data
structures

 groups the
main objects of
a problem
(algorithm)

 identifies the
type of
prototype
problem

 compares
advantages and
disadvantages
of static and
dynamic
implementation
of data
structures

 determines
basic actions to
solve a problem

 identifies
similarities with
similar
problems

 formulates
objective,
hypotheses and
boundary
conditions for
the solution of
the problem

 selects the right
data structure
for decision
tasks

 implements
abstract data
structures

Procedural
Knowledge

 describes basic
operations

 lists the types of
control structures

 reads programming
objects

 describes the standard
algorithms

 under-stands
basic
operations
and values of
program
objects

 under-stands
results using
control
structures

 separates
major and
minor
elements
(facts) for the
solution of a
problem

 deter-mines
restrictions for
input and or
output data

 implements
operations:
arithmetic,
logic, etc.

 explains the
values of
program
objects

 implements
appropriate
management
structures

 changes the
input data
(after an error)

 structures
information

 plans the
strategy and
analysts of the
results

 performs
formal
algorithms

 checks the
results through
formal and
proper
execution of
actions

 divides concept
(operation) of
the basic
components

 compares
alternative
representations
of data
structures from
the viewpoint
of
performance.

 Categorizes
problem.

 Compares
different
solutions to a
problem.

 Analyzes the
results
obtained.

 Matches the
solution model
(algorithm)
with a problem
(task).

 Provides a
decision and a
number of
separate steps.

 Analyzes the
correctness of
the algorithm

 tests and
evaluates errors
in an algorithm

 understands and
explains the
cases in which a
suitable
algorithm can
be applied
(iteration,
recursion)

 determines the
sequence of
execution of
elementary
actions to solve
a problem

 critiques ready
programs

 evaluates the
effectiveness of
the algorithm
(time and
memory usage)

 evaluates
alternative
(different)
solutions to a
problem

 specifies
properties
inherent to the
best algorithm

 formulates
difficulties in
the
implement-ratio
n of the decision

 working group
(team), assesses
(accepts or
rejects) the
ideas of team
members

 creates
standard
algorithms

 modifies the
algorithm

 sets the
algorithm

 within the
system of
elementary
actions, builds
an algorithm

 implements
programs using
abstract data
structures

 adapts standard
algorithms to a
real task.

 recognizes and
extracts the
prototype of
similar
problems in
different
contexts
problem

 reformulates
the problem in
terms of IT

(Table 1 to be continued)

A Didactic Model for Developmental Training in Computer Science

 476

(Table 1 continued)
Metacognitive

Knowledge
 recognizes the

main object of a
real problem.

 indicates the type
of concept

 recognizes
program objects

 knows the
standard
algorithms

 identifies
strategies for

retaining
information

 detects the type of
problem

 describes
strategies

 specifies
alternative
concepts and
objects

 understands the
algorithm

 uses the result of
an action for proof
or rejection of
hypothesis

 detects the type of
problem

 describes strategies
 specifies alternative

concepts and
objects

 understands the
algorithm.

 uses the result of an
action for proof or
rejection of
hypothesis

 explains the
results of different
actions

 determines
contraction
algorithm

 describes the
typical
applications of
data structures

 describes and
applies strategies
for debugging

 explains the
algorithm action

 describes the
essential and
secondary
connections
between
concepts

 finds the
relation
between
subtasks

 classifies and
analyze
information

 structures the
facts

 justifies the
choice of action
to address the
problem

 designs
effective tests
for the analysis
of algorithms

 detects errors
(semantic, logical)
in the algorithm

 tests the results
and adjusts the
input, if there is a
discrepancy of
these results with
expected results

 assesses in which
cases a method or
an algorithm is
suitable

 establishes cause
and effect
relationships

 formulates a
hypothesis by
accepting or
rejecting the
opinion (in the
team)

 formulates
conclusions

 develops some
criteria for
evaluations of the
project

 defines a problem
that is new
(unknown) or
applicable in a
new situation

 formulates a new
problem in terms
of informatics

 formulates
alternative
hypotheses

 offers improved
project decision
based on defined
criteria

 develops a
research plan of
the (new)
unknown problem

 implements the
idea for the
research of a new
problem

 formulates
difficulties in the
solution of an
unknown problem

5. Criteria for Diagnostics of Learning Results

One of the major problems of both the theory and practice of the didactic testing is the determination of the

objectives and the tasks of the educational work, the achievement of which is diagnosed by tests (Bizhkov, 2007).

The defining of the objectives is an important stage of the overall planning, conducting and evaluation of the

education.

According to the definition adopted by the European Qualification Framework (EQF), the learning outcome

is defined as an indicator of what the trainee knows, understands and is able to do in completing the learning

process. Therefore, the emphasis is on the learning results, which are specified in three categories — knowledge,

skills and competence. Within the context of EQF, competence means a proved ability to use knowledge, skills

and personal, social and/or methodological abilities in the work to study situations and to achieve professional and

personal development. The term competence is broader and typically refers to the ability of a person to face new

situations successfully using and applying knowledge and skills in an independent and self-directed way (ESCO,

2013).

The initial teaching of informatics and information technologies must form not only the basic concepts, skills

and habits to work with computer, but also to provide development of certain style of thinking.

For the obtaining of objective information regarding the accessibility of the suggested educational content

and the efficiency of the developed educational methodology aimed at the development of algorithmic thinking,

criteria and indicators for the evaluation of the learning outcomes are necessary. The traditional structure of

conducting pedagogical experiments includes three stages: a preliminary experimentation, a forming experiment

and a concluding experiment. The objective is to follow the development of the results by applying the elaborated

methodology. Since the suggested methodology includes the content of a course on “Basics of the Computer

A Didactic Model for Developmental Training in Computer Science

 477

Science” and “Programming”, it is very difficult to devise criteria and indicators for preliminary evaluation of the

trainees which could be used in both experiments — the preliminary and the control experiment. The reason is the

fact that in the last two stages of the experiment, concepts and algorithms are observed, which cannot be known to

the trainees previously and the degree of their mastering cannot be followed at the preliminary stage. That is why

most of the indicators used for the evaluation of the outcomes are with changeable formulation for the preliminary

and the concluding experiment (Terzieva, 2011). For the operationalization of the objectives, the extended

Bloom’s taxonomy is used.

We made a survey of the opinion of teachers in Computer Science at Plovdiv University Paisii Hilendarski,

Bulgaria, regarding the degree of significance of the named skills and objectives for the basic training of the

students in the Informatics Bachelor program. The results obtained showed that most important were considered

the skills for problem analysis and algorithm analysis, followed in significance by the skills for formalization,

abstracting from the specific input data and proceeding to the solution of the task in general aspect, as well as the

use of a general algorithm for solving a specific problem. The lecturers considered the creation of a new

(unknown for the students) algorithm difficult and less significant activity in the teaching of computer science and

accentuate on the analyzing and formalizing skills (Terzieva, 2011).

We used the following criteria to evaluate the results:

Criterion I: Knowledge and skills related to problem solving.

1) Ability to analyze, define problems and identify appropriate data types.

2) Ability to decompose a problem into subtasks which can be differentiated into subroutines.

3) Ability to define and to use abstract data structures.

4) Ability to implement basic algorithms in abstract data structures.

Criterion II: Knowledge and skills related to understanding and implementing the algorithm.

1) Understanding and monitoring the implementation of a program.

2) Understanding and modifying the algorithm of the context.

3) Ability to define an appropriate data structure and algorithmic performance.

4) Ability to test and to adjust a program and to correct the errors in the algorithm.

Criterion III: Knowledge and skills related to the analysis of algorithms.

1) Analysis of the correctness of the algorithm.

2) Evaluation of the effectiveness of the algorithm.

3) Comparison and analysis of different solutions of a problem.

4) Ability to experiment, analyze the obtained results and correct the input data if necessary.

The main questions which must be answered are related to whether the objectives are achieved, to the

efficiency of the learning work, how well is developed the educational environment and the technology of

teaching, etc.

6. Analysis of the Test Results

Tools used to assess the results obtained by training include didactic tests, tasks and assignments that require

writing a complete program.

Used didactic means: Tests — the main experimental diagnostic tool. Tests are conducted at each of the

stages. Specially created control exercises — include creating a model of a subject area, a description of the

A Didactic Model for Developmental Training in Computer Science

 478

stages of the development of an algorithm written in code with a given specification, detection and correction of

syntactic and semantic errors in a program task to find the optimal solution with the used algorithm and data

structure, etc. Tasks, which require writing a comprehensive program, suitable for evaluation of the applications

and practical skills of the students.

The suggested criteria for evaluation of the algorithmic thinking formation are approbated during the lectures

with first-year students in the Informatics major in the Faculty of Mathematics and Informatics at the Plovdiv

University for a period of three years.

The traditional structure of conducting pedagogical experiments includes three stages (Bizhkov, 2007):

preliminary (notes) experiment, procedure (formative) and final test. The aim of the preliminary experiment was

found to establish a baseline of the object of study. The formative experiment was proposed after 4-5 weeks of the

process of the experimental learning. The final test was conducted at the end of the period. The aim was to trace

the development of the results of applying the elaborated methodology.

At each of the three stages of the experiment, students completed a test of 12 questions and solved an

additional task in C++. The relevant questions significantly differed in numbers and results between different

measurements could not be compared. The results obtained by the students for each of the questions were read

personally, but for the sake of clarity, the data were presented in the form of summary — the total number of

points obtained after collection of individual item test results of each student in both groups (EG and KG) of

students in the Informatics Bachelor program.

The teaching methodology used in the experimental group (EG) achieved significant results. The main

indicator for this was the statistical significance of the interaction effect between the factors of the measurement

stage and the belonging to a control or experimental group (Terzieva, 2012).

The classical analysis of the reliability was found by calculating the Cronbach’s alpha coefficient with

maximum value 1, and for each of the item individual indices of discrimination with a maximum value 1.

(Bizhkov, 2007). To compare the results of test 3, we put into practice the method of Kolmogorov-Smirrnov

(Figure 1) and also examined the mathematical expectation, applying T-statistics (t-Test: Two-Sample Assuming

Equal Variances).

Figure 1 Results of Kolmogorov-Smirnov Test

The classical analysis of the reliability is found by calculating the Cronbach’s alpha coefficient with

maximum value 1, and for each of the item individual indices of discrimination with a maximum value 1. To

compare the results of the final test (test 3) (Figure 1) the method of Kolmogorov-Smirnov is put into practice and

the mathematical expectation is also examine, applying T-statistics (t-Test: Two-Sample Assuming Equal

Variances) (Figure 2).

A Didactic Model for Developmental Training in Computer Science

 479

Figure 2 Results of T-statistics

From Figure 1 shows that the cumulative frequencies were substantially different, as the control group (CG)

is located entirely above the line of the EG, and in some parts, the distance between them is considerable. If we

examine the histograms of the two groups, we will notice the difference in the distribution of scores after the

training (Figure 2). Students in the CG showed significantly lower results compared to the experimental group.

The survey data on the indicators (Figure 3) shows that the most significant difference in terms of the results

of the seventh indicator is the ability to define an appropriate data structure, as well as the ability to analyze a

problem, the skill to divide the problem into subtasks and the ability to compare and analyze different solutions.

The ability to understand and implement the algorithm in the training process was involved significantly. Most

significant was the difference in terms of the ability for modeling.

Figure 3 Comparative Results on Indicators from Final Test

7. Conclusion

The main educational activities related to the formation of skills for problem analysis, algorithm

comprehension and execution, as well as algorithm analysis were at a higher cognitive level. They were

exclusively procedural and of metacognitive type of knowledge. The levels of the cognitive process were also of a

higher level — analysis, synthesis, evaluation. Therefore, special efforts are needed to form and improve these

skills.

A Didactic Model for Developmental Training in Computer Science

 480

The initial programming courses introduce to students the technology of design, developing and

implementation of a computer program. At the same time, we must encourage the development of skills necessary

for the application of conceptual knowledge to create habits that can be applied for studying and developing the

next disciplines in computer science. Thus, indeed, programming is a specific type of human activity and its

successful implementation requires not only practical application of the acquired knowledge and skills, but also a

specific type of thinking.

References
Anderson L. and Krathwohl D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing, New York: Longman.
Andreev М. (1996). The Process of Learning, Didactics, University Publishing House “St. Kliment Ohridski”, Sofia. (in Bulgarian)
Bizhkov G. and Kraevski S. (2007). Methodology and Methods of Pedagogical Research, Publishing House “St. University Ohridski”,

Sofia. (in Bulgarian)
Bloom B. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I, Cognitive Domain,

New York: Longmans.
Brown W. (2002). Introduction to Algorithms (2nd ed.), MIT Press, pp. 61–66.
Cormen T., Leiserson C., Rivest R. and Stein C. (1990). Introduction to Algorithms, Cambridge, MA: MIT Press, p. 984.
Fuller U., Johnson C. G., Ahoniemi T., Cukierman D., Hern I. and Hernn-Losada I. (2007). Developing A Computer Science-Specific

Learning Taxonomy, ACM SIGCSE Bulletin, Vol. 39, No. 4, pp. 152–170.
Gazeykina A. (2004). Styles of Thinking in Teaching Programming to Students of Pedagogical Universities, Ekaterinburg. (in

Russian)
Grozdev S. (2007). For High Achievements in Mathematics: The Bulgarian Experience — Theory and Practice, ADE, Sofia.
Grozdev S. and Terzieva T. (2011). “Research of the concept of algorithmic thinking in teaching computer science”, The

International Scientific-Practical Conference “Informatization of Education – 2011”, Elec: EGU Bunin, 14–15 June, pp. Т1,
112–119. (in Russian)

Halpern D. (1996). Thought and Knowledge: An Introduction to Critical Thinking, Hillsdale, New Jersy, Mahwah.
Kolczyk E. (2008). Algorithm — Fundamental Concept in Preparing Informatics Teachers, Springer Berlin/Heidelberg, Volume 5090,

pp. 265–271.
Knuth D. (1985). “Algorithmic thinking and mathematical thinking”, The American Mathematical Monthly.
Krathwohl D. (2002). “A revision of bloom’s taxonomy: An overview”, Theory into Practice, Vol. 41, No. 4, pp. 212–218.
Mikova E. (2005). “Developing of algorithmic thinking: The base of programming”, International Journal of Continuing

Engineering Education and Life Long Learning, Vol. 15, Number 3–6, pp. 135–147.
Piaget J. (1983). “Piaget’s theory”, in: P. Mussen (Ed.), Handbook of Child Psychology (4th ed.), Vol. 1, New York: Wiley.
Pintrich P. (2002). “The role of Metacognitive knowledge in learning, teaching, and assessing: Theory into practice”, Copyright

College of Education, the Ohio State University, Vol. 41, No. 4, pp. 219–225.
Rahnev A. (2010). “Intensification of teaching programming using information technology”, Habilitation Thesis for the Award of the

Academic Title “Professor”, Sofia. (In Bulgarian)
Schwank I. (1993). “On the analysis of cognitive structures in algorithmic thinking: Processing language in introduction to computer

science honors”, Journal of Mathematical Behavior, Vol. 12, pp. 209–231.
Snyder L. (2006). Algorithmic Thinking: The Key for Understanding Computer Science, Springer-Verlag Berlin Heidelberg, pp.

159-168.
Terzieva T. (2011). “Some criteria and indicators for diagnosis of the forming of algorithmic thinking in computer science”, Scientific

Works, Plovdiv University, Vol. 38, Book 3, Mathematics, Plovdiv, Bulgaria.
Terzieva T. (2012). “Experimental study on forming of knowledge and skills in programming”, Anniversary National Scientific

International Conference “Traditions, Directions, Challenges”, October 19–21, 2012, Smolyan, Bulgaria, pp. 183–189.
Vorontsova and Rusakov (2010). “On the formation of the notion of ‘Algorithm’ in the course of Informatics on high school”,

Educational Informatics, Vol. 3. (In Russian)
Wing J. (2006). “Computational thinking”, Communications of the ACM, Vol. 49, No. 3, pp. 33–35.
ESCO (2013). “European skills, competences, qualifications and occupations”, available online at:

https://ec.europa.eu/esco/web/guest/escopedia/-/escopedia/Competence.

