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Communication and Confidence in Financial Networks 
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Abstract: We develop an asset pricing model in which agents communicate information in social networks 

prior to trading. An agent who is more confident in her private information attaches a greater weight on her private 

signal than on a signal received from communication when transmitting her information. The model generates 

novel implications: First, proximity between agents in networks affects correlation of asset demands. Second, the 

impact of agents’ private information on asset prices depends on network structures. Third, irrespective of network 

structures, market liquidity, trading volume, price volatility and informational efficiency of prices are all higher 

with communication than without. Interestingly, information communication can alternatively explain some 

intriguing empirical facts which were attributed to overconfidence in the existing studies. 
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No man is an island, entire of itself; every man is a piece of the continent, a part of the main. 

                                          -------- Jone Donne, early seventeenth English poet1 
Word-of-mouth transmission of ideas appears to be an important contributor to day-to-day or hour-to-hour stock market 

fluctuation. 
                                                      -------- Robert Shiller (2000, p. 155) 

1. Introduction 

Information communication takes various forms in financial networks where traders discuss news, share 

ideas and learn from each other. The existing literature on asset pricing under asymmetric information mainly 

focuses on the information aggregation or transmission role played by asset prices and on the resulting trading 

patterns under different trading schemes or market arrangements (O’Hara, 1995; Foucault, Pagano, & Roell, 

2013). The social structures where traders directly interact with one another have been largely unexplored. 

Heterogeneous traders are assumed to make strategic decisions by monopolistically exploiting their own private 

information about the fundamental value of assets, and they completely ignore word-of-mouth communication 

and any other information exchange channels even when they have personal contact with competitors. In a sense, 

each trader resides alone in a spatially disconnected island. 

A growing empirical literature has documented that information communication in financial networks affects 

individual trading behavior and market trading patterns. The purpose of this paper is to incorporate information 
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communication in different financial networks into the strategic rational expectations framework à la Kyle (1985) 

and to study its asset pricing and welfare implications.2 In particular, we propose a framework in which 

risk-neutral informed traders (henceforth called agents) engage in direct and truthful communication in an 

exogenously established social structure, represented by circle or star networks.3 Simple as they are, circle and 

star networks have attracted most attentions by network economists. For instance, Bala and Goyal (2000) provide 

theoretical foundation of endogenous network formation. They show that under certain conditions, agents 

strategically form either circle or star network to share the informational benefits. A small number of papers that 

consider social communication in financial markets also focus on the circle and star networks (see section 2). The 

novelty of our modeling of communication is twofold. First, the flow of information transmission prior to trading 

is one-way directed and takes a specific form. In the circle network, each agent receives a signal from her closest 

left side neighbor, and then transmits a linear combination of her own private signal and this network signal to her 

closest right side neighbor. In the star network, in addition to her private signal, one agent receives another signal 

and entertains a central position; she similarly transmits a synthetic signal unilaterally to disjointed peripheral 

agents. The one-way directed information transmission modeling has the advantages that it facilitates equilibrium 

analysis. In the simplest way, the circle network represents the situation in which information is transmitted 

symmetrically while the star network captures the asymmetric information communication. As a starting point, 

analysis of these basic networks will further shed light on our understanding of more complicated ones. Second, 

when an agent forms the linear aggregation of private and network signals prior to trading, a measure of an agent’s 

confidence degree of her private signal is integrated. More precisely, when aggregating and transmitting her 

information, the agent who is more confident in private information attaches a greater weight on the private signal 

than on the network signal received from communication. This modeling is introduced to capture the findings in 

cognitive psychology that agent tends to believe her private information is better than average (Odean, 1998). 

One strand of empirical studies focuses on agents’ portfolio choice influenced by their geographic proximity 

(e.g., Feng & Seasholes, 2004; Hong, Kubik & Stein, 2005; Ivković & Weisbenner, 2007). This phenomenon is 

explained either by home bias, local informational advantage, or by word-of-mouth information sharing. Our first 

result connects agents’ proximity in financial networks to the correlation of their asset demands. Communication 

creates information overlapping among agents. When an agent is closer to her neighbors, the correlation of their 

demands is higher. 

Not surprisingly, the impacts of private signal on equilibrium price are distinct in the circle and star networks. 

Agents in the circle network influences, through their private signals, the equilibrium price in an identical and 

symmetric manner. The central agent’s private signal in the star network has greater influence on equilibrium price 

because it is exploited by the peripherals too. Trading behavior in the star network therefore provides a plausible 

explanation for the often observed large price swing in financial markets without prior significant change in 

fundamentals. 

Despite the dissimilarity of agent’s information utilization and social influence on price in different networks, 

we demonstrate that the market trading patterns are similar irrespective of network structures in that market 

liquidity, expected trading volume, price volatility and the informational efficiency of price, are all higher with 

communication than without. Communication generates additional more precise information, and agents thus 

                                                        
2 We explain in section 3 why we illustrate the idea through this framework. 
3 Information manipulation is extensively studied in the literature, we therefore choose to assume it away and highlight the other 
aspects of communication. Section 2 reviews some studies that consider direct and truthful information disclosure. 
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trade more aggressively and on average trading volume increases. Equilibrium price becomes more volatile as 

each private signal has a greater impact on the price. The more intense competition lessens the adverse selection 

faced by a competitive market-maker thus the market becomes more liquid. At the same time, since more 

information is revealed to the market-maker who therefore sets price closer to the asset value, as a result price 

becomes more informative and efficient. These results accord well with the well-known empirical findings of 

market trading phenomena such as tremendous trading volume and excessive price volatility. Theoretical work has 

extensively explored the underlying economic mechanisms. Our information communication explanation is new 

and complements the existing studies. 

When an agent attaches a very high confidence degree on her private signal relative to the signal received 

from communication, we can argue that she is overconfident in her private signal, in other words, she mistakenly 

believes that her private signal is more precise than others’. We establish that market liquidity, expected trading 

volume, price volatility and price efficiency in both networks are strictly decreasing in the confidence degree 

while agents’ expected profits are increasing in it. These comparative statics are directly opposite to the existing 

overconfidence literature which also aims to explain the high market liquidity, expected trading volume, price 

volatility and price efficiency and investors’ low expected profits (Odean, 1998; Wang, 1998; Gervais & Odean, 

2001; among others). Very interestingly, some intriguing empirical facts documented by Barber and Odean (2001, 

2002) that men or online traders on average trade more frequently but less profitably than women or phone-based 

traders, previously attributed to the traders’ overconfidence tendency, can be alternatively interpreted by the fact 

that they are more prone to participate in communication regarding asset information relative to their counterparts. 

Therefore we provide an alternative explanation and these findings have not been previously reported in the 

literature. 

The paper is organized as follows. Section 2 reviews the existing literature. Section 3 extends Kyle’s model, 

defines equilibrium strategies and introduces the modeling of information communication and confidence degrees. 

Section 4 and 5 derive asset pricing and welfare implications of information communication in the circle and star 

networks respectively. Section 6 compares the explanations of information communication and overconfidence 

regarding market trading patterns and individual welfare. Section 7 presents brief concluding remarks. All 

analytical proofs are relegated to the Appendix. 

2. Literature Review 

Trading activity is economic as well as sociological. Shiller (2000) provides a broad and in-depth 

investigation of world-of-mouth communication among financial markets traders. Nonetheless, only until very 

recently have economists found actual supporting data. Feng and Seasholes (2004) present that isolated groups of 

investors in one region of a country engage in positive correlated trading behavior at a weekly frequency. Hong, 

Kubik, and Stein (2004) find that socially active households are more likely to invest in the stock markets. Hong, 

Kubik, and Stein (2005) show that, even in the absence of local information advantage, a mutual fund manager is 

more likely to hold or trade a particular stock in any quarter if other managers from different fund families located 

in the same city are holding or trading that stock. Ivković and Weisbenner (2007) attribute one-quarter to one-half 

of the correlation between households’ stock purchases and stock purchases made by their neighbors to 

word-of-mouth communication. 

The recent popularity of the Internet chat rooms on financial investment as a medium of financial markets 
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discussion attracts a lot of academic attention. Wysocki (1998) reports that message posting forecast next-day 

trading volume and next-day abnormal stock returns. The firms with high message postings are characterized by 

high trading volume. Antweiler and Frank (2004a) find that high message posting on a given day is associated 

with a small negative return and greater volatility on the next day. Antweiler and Frank (2004b) consider a much 

larger database and show that stocks that are heavily discussed are particularly heavily traded, unusually volatile, 

and have surprisingly poor subsequent returns. Our paper contributes to both literatures by formally providing 

economic mechanism that governs the interaction among information communication, trading behavior and asset 

pricing. 

Disproportionately, only a few authors develop analytical models to study the effects of information 

communication in financial networks. Ozsoylev (2004) studies the existence and properties of equilibrium price 

when social interaction is incorporated into Hellwig (1980). Ozsoylev (2005) allows agents to directly and 

truthfully share information in social network with very general structure. He establishes that proximity between 

agents in network influence agents’ asset demand correlation and that communication in network may account for 

the observed high volatility ratio of price to fundamentals in financial markets. Colla and Mele (2010) consider 

information communication in a circle network à la Foster and Viswanathan (1996). Han and Yang (2013) show 

that in the presence of communication, the properties of market liquidity, expected trading volume, price volatility 

and price efficiency depend crucially on whether private signals are exogenous available or endogenously 

acquired. Our model generates a number of novel implications regarding asset pricing and trading behavior, and 

can be seen as a complement to above analytical work. Moreover, the modeling of confidence is a unique feature 

in our paper, making it is possible to compare our model with overconfidence literature which also produces 

similar implications consistent with empirical findings. 

One-way directed but strategic information communication in an essential star network à la Kyle (1985) has 

been studied intensively in the voluntary disclosure literature. Bushman and Indjejikian (1995), and Shin and 

Singh (1999) show that an insider can benefit from disclosing her information to some extent, which is achieved 

either by eroding the informational advantages of her competitors through market-maker’s adjusted pricing 

strategy, or by diluting competitors’ information and regaining monopoly on her additional private signal. Van 

Bommel (2003) show that a wealth constrained insider gains by spreading rumor such as buy or sell to an 

audience of followers when each informed follower continues to pass the rumor to a number of uninformed 

followers. In our paper information communication is modeled as sociological trait associated with trading 

behavior rather than strategic and beneficial use of information. 

The role of interpersonal and interactive communication through social network in decision making has long 

been recognized in other fields of economic activities. Ellison and Fudenberg (1995) and Bala and Goyal (1998) 

show that communication in social networks play a major role in technology adoption. DeMarzo, Vayanos and 

Zwiebel (2003) explore the role of repetitive information communication in social networks to understand 

behavioral bias in political and marketing issues. Their model can be used to capture local preference for 

conformity and habit persistence. Jackson (2010) presents an excellent textbook on network economics. 

3. The Basic Framework 

We model the information communication in the strategic rational expectations model pioneered by Kyle 

(1985). Introducing information communication into the competitive rational expectation paradigm à la Hellwig 



Communication and Confidence in Financial Networks 

 529

(1980) will not change the main results of this paper since the driving mechanism is still applicable. However, in 

the latter framework both price and communication convey information across agents which complicates the 

analysis of conditional expectation formation regarding risky asset value. 4  The advantage of modeling 

information communication in Kyle (1985) is evident since agents cannot observe price when they submit market 

order, therefore the communication effect can be demonstrated clearly. 

3.1 The Economy 
In a security market n risk-neutral privately informed agents and uninformed noise traders submit market 

orders simultaneously to a risk-neutral competitive market-maker, not knowing the market clearing price when 
they do so. Trading takes place at time 1 and the single risky asset is liquidated at time 2. The terminal value of the 

asset v is normally distributed ( , )N v  (where v is assumed, without loss of generality, to be 0. Prior to 

trading, agent i observes a signal i is v      where i  is normally and identically distributed N(0, ) for 

 1,...,i n N  . In the presence of information communication, agent i receives a network signal ir  from 

another agent, whose exact form depend on network structure and will be made clear in the subsequent sections. 

Noise traders submit an exogenous random quantity u  which is normally distributed N(0, ). The random 

variables v , i  and u  are assumed to be mutually independent for all i. The market-maker absorbs the net 

trade and sets price expecting to earn a zero profit. 

Agent i’s trading strategy is given by a measurable function Xi: 
2→ , determining her market order as a 

function of her information set ( , )i i is r   . For a given strategy, let ( )i i ix X   . A strategy profile {X1, … ,Xn} 

determines order flow 
1

n

ii
x u


    . The market-maker’s pricing strategy is given by a measurable function 

P:  . Given(X1, …,Xn, P), define ( )p P    and let ( ) iv p x       denote the resulting profit for agent i. 

Based on her information set, each agent acts strategically by taking into account the fact that her optimal 

demand, as well as others’ order decisions, will influence the asset price and her profit. The market-maker 

attempts to infer the private information from the order flow and sets price as efficiently as possible to protect 

himself from adverse selection. These considerations are formally expressed below. 
Definition 1 The Bayesian Nash equilibrium consists of agents’ trading strategy profile {X1, … ,Xn} and the 

market-maker’s pricing strategy P, such that the following conditions hold: 

(1) Profit maximization: for agenti’s any alternative trading strategy iX  , 

( )    | ( ) ( ) ;i i i i j i i i
j i

X v P x X up
¢ ¢

¹

æ é æ öù ö÷ ÷ç ç³ - å + +ê ú÷ ÷ç ç ÷ ÷ç çè è ø øê úë û
     

           
(1) 

(2) Market semi-strong efficiency: the pricing strategy P satisfies 

( ) 
1

.
n

i
i

P v x uw w
=

æ ö÷ç ÷ç= = å + ÷ç ÷ç ÷çè ø
   

                            

(2) 

We focus on equilibrium with linear strategies and postulate that agent i’s trading strategy and the 

market-maker’s pricing strategy are  

                                                        
4 To distinguish the role played by communication from price, Ozsoylev (2005) has to assume an unrealistically large noise trading 
variance, so that variations in price mainly reflect variations in noise trading rather than variations in information. 
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( )
( )
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,
i i i i i i iX s r s r i

P

a b
w lw

= +
=

   
 

 

respectively. We refer to i and i as trading intensity parameters associated with private and network signals, and 

 as the market liquidity/depth parameter. A low  means a more liquid (or deeper) market in the sense that the 

cost of a given trade is low. In the presence of communication, symbol subscripts will be used to indicate network 

structures. 

3.2 Information Communication and Confidence Degree 

After observing private signals, agents engage in information communication. Depending on network 

structures, an agent directly sends and/or receives truthful information to/from other agents. The model therefore 

rules out strategic information transmission and information-based price manipulation. 

To fix idea, besides private signal is , agent i receives a network signal, denoted by ir , from information 

communication in a social network. When a new agent j joins the network and connects to agent i, the former gets 

information jr  from the latter as information is assumed to be transmitted in a one-way direction. The content of 

jr  can take many different forms. For example, agent i may choose to send her private signal only, so j ir s=  ; 

or agent i may simply pass her network signal, therefore j ir r=  ; or agent i may disclose all of her information, 

that is, { },j i ir s r=   . The first case is studied by Ozsoylev (2005), Colla and Mele (2010), and Han and Yang 

(2013), while the last one is considered by Bala and Goyal (2000).5 Above examples have their own merits, 
nonetheless other possibilities deserve exploring. In this paper we study a specific form of information 

communication. Agent j is assumed to receive synthetic information from agent i that jr  is a linear combination 

of is and ir :  

( )  1 ,  , .j i ir s r i jq q= + -  
                     (5) 

Where the parameter [0, 1] is the weight attached to agent i’s private signal. When  = 0 or 1, this 

communication rule coincides with the first two examples mentioned above. It is also compatible with the 

full-disclosure example since the weights can be chosen such that jr  becomes the sufficient statistic of{ },i is r  . 

A similar information aggregating rule in a repetitive communication model is studied by DeMarzo, Vayanos and 

Zwiebel (2003). In their model, the weights  and 1- reflect the relative precision of is  and ir  respectively, 

that is, the linearly combined information is the sufficient statistic of individual signals regarding asset value; or 

they embody agent’s beliefs about is  and ir  so that information is not necessarily aggregated efficiently. 

In this paper we interpret the weights  and 1- as agent’s confidence degrees of her private and network 

signals respectively, and we study the impacts of varying on the resulting individual trading behavior and market 

trading patterns. For simplicity we assume that all agents select the same  so it is can be thought of as a measure 

of public confidence in private signal. Two attractive features of this modeling choice will be evident in the 
subsequent analysis. First, when agents’ confidence degree is very high, its effect on signals’ relative precision 
looks as if agents favorably perceive the precision of private signals compared to that of network signals, i.e., 

                                                        
5 In the model of Bala and Goyal (2000), when agent j is connected to agent i who is linked to agent k, then agent j will derive 
benefit from both agents i and k, even though agent j is not connected with agent k directly. 



Communication and Confidence in Financial Networks 

 531

agents are overconfident in their private signals. Second, the information structures in the circle and star networks, 

together with the restriction that [0, 1], guarantees that network signals are no less precise than agents’ private 

signals, so that agents do not ignore the information content of the network signals. 

4. Trading in Circle Network 

In this section we study individual trading behavior and market trading patterns in the security market when 

information communication structure is presented by a circle graph. The environment is identical to what is 

introduced in section 3 except that n informed agents are ordered clockwise, as to say that agent i has agent i+1 to 

her left and agent i-1 to her right. The graph in Figure 1 is a symbolic representation of a circle network. It implies 

an abstraction of the reality so communicating agents can be simplified as a set of linked nodes, and arrows 

indicate the one-way directed information transmission. 
 

 
Figure 1  Information Transmission in the Circle Network 

Note: The set of linked nodes represents social communication among agents. Arrows indicate the direction of 

information transmission. For all i∈N, in addition to private signal, agent i receives “synthetic” network signal about the 

risky asset value from agent i+1 (modn). 
 

Prior to trading, an agent, say i+1, obtains information from her closest left side neighbor i+2. Agent i+1 then 

determines a linear combination of her private and network signals, then transmits the synthetic information to her 

closest right side neighbor i, and so on. It is assumed that the lack of geographical or socioeconomic proximity 

prevents agent i+2 from directly communicating with agent i. We therefore have the expression for the network 

signal: 

( )  1 11   (mod  ),  ,  (0,1].i i ir s r n iq q q+ += + -                (6) 

The modular arithmetic with modulus n, denoted by (mod n) is used if necessary. For example, five agents 
after (n-2)th agent is the third agent. 

Although the circle network considered is something of a modeling device, it is not too unrealistic. First, 

Bala and Goyal (2000) show that under certain conditions agents will strategically form a circle network when 

beneficial information transmission is one-way directed. It is conceivable that, at least in short period, these agents 

will rely on this established network to exchange information. Second, the modeling captures some important 

features of communication in financial markets. For example, the successive circulation of investment newsletter 

and financial press, and the orderly and continuous discussion on Internet stock message boards resemble quite 

closely the one-way directed communication in the circle network. 

Assume away repetitive information transmission, the circle network dictates that 
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   (mod  ), .i i nr r n i+= 
                                (7) 

When [0, 1], (6) and (7) together yield 

( )
( )

( )
( )

 
1 1
0 01 11 1

  (mod  ), ,
1 1 1 1

k kn n
k ki k i k

i n n

s
r v n i

q q q q e

q q

- -
= =+ + + +- -å å

= = +
- - - -


     (8) 

thus information received from the closest left side neighbor not only contains her private signal but also 
aggregates signals of agents linked by the closest left side neighbor, and signals of those who are linked by agents 

linked by the closet left side neighbor, and so on. It is noteworthy that the weights of 1i ks + + , the private signals 

of agent i’s left side neighbors, for k = 0, …, n-1, are ranked in a descending order in ir  and the weights sum up 

to one. 

When  = 1, (8) is replaced with 

 1   (mod  ), ,i ir s n i+= 
                              (9) 

so agent i’s network signal is just the private signal of her closest left side neighbor. 

It is easy to show that the network signal is distributed identically as 

( )
( )

N  
1 1

0,  ,  and (0,1].
2 1 1

n

i n
r i

qq
q

q q

æ ö÷+ -ç ÷ç ÷S + Fç ÷ç ÷-ç ÷÷ç - -è ø
 

    

(10) 

The equilibrium trading and pricing strategies in the circle network are similarly defined as Definition 1 

except that network signal ir  in information set i
  is given by (8) and (9) when ( ) 0,1q  and = 1 

respectively. Subscript   is used below to indicate the circle network. A unique symmetric linear equilibrium is 
solved and the results are collected in Theorem 1. 

Theorem 1 In the circle network, there exists a unique symmetric linear equilibrium  

( )  , , ,i i i i iX s r s r ia b= +     
                       

(11) 

( )
1

.
n

i
i

P x uw l
=

æ ö÷ç ÷ç= å + ÷ç ÷ç ÷çè ø
                                (12) 

Where the trading intensity parameters  and , and the liquidity parameter  are given by 
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The second order condition   0 is satisfied. 

The impacts of exogenous parameters (n, , , ) on equilibrium properties have been intensively explored 
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in the extensions to Kyle (1985) without information communication. Their roles in the communication economy 

are similar. For instance, the market liquidity parameter is decreasing in the number of informed agents n because 

more competition leads to a decrease in the adverse selection faced by the market-maker. In the circle network an 

increase in n also increases the precision of network signal, which further reinforces the competition between 

agents, enabling market to be even more liquid. Similarly, the variance of noise trading  does not affect price 

volatility and price efficiency because agents scale up their trading intensities in response to an increase in the 

amount of noise trading, no matter whether there is information communication or not. Since the confidence 

degree  is a new parameter in the model, we only focus on its effects on individual trading behavior and market 

trading patterns to preserve space in the following equilibrium analysis. 

4.1 Demand Correlation and Proximity 

The empirical studies by Feng and Seasholes (2004), Hong, Kubik, and Stein (2004, 2005), and Ivković and 

Weisbenner (2007) suggest that the closer is the geographic proximity between agents, the more correlated is their 

trading behavior. Other than the possible local information advantage, one way to formalize this observation is to 

show the relationship between correlation of agents’ demands and their proximity is decreasing. Proposition 1 

shows that this is indeed the case. 

Proposition 1 In the circle network, when n  4, we have:6 
(1) The correlation of agent demands is non-increasing in agents’ proximity for  = 1. In particular, the 

correlation of an agent and her closest neighbors’ demands is the largest.  

( ) ( ) ( )1, , ,   (mod  ), 2 / 2.i i i i i i jcorr x x corr x x corr x x n j n + +> = £ < £              

(2) The correlation of agent demands is strictly decreasing in agents’ proximity for (0, 1).  

( ) ( ), , ,  (mod  ), 1 / 2.i i i i jcorr x x corr x x n j n+ +> £ < £          

When  = 1, we have a b=   and for  i , 

( )

( )

1
4

,   (mod  ),
4 2

2
, ,  2 ,  (mod  ).

2 2

i i

i i j

corr x x n

n
corr x x j n



+

S + F
=

S + F
S

= £ £
S + F

 

 

 

 
 

It’s clear that the correlation of an agent and her closest left/right neighbor’s demands is the largest as the 

overlapping of private signals is the greatest. A stronger monotone relationship is established when (0, 1). The 

reason is straightforward: when agent i +   is closer to i than i + j, her private signal has more influence on i’s 

demand. At the same time, although agent i’s private signal has more influence on i + j’s demand, the latter’s 

influence is dominated by the former’s. As a result, the correlation of demands between agents i and i +   is 

larger than that between agents i and i + j. 

In our model proximity could be broadly determined by ethnical, cultural and socioeconomic factors, and the 

same idea is applicable in other financial decisions. For instance, Kelly and Ó Gráda (2000) examine the behavior 

of Irish depositors in a New York bank during two panics in 1850s. The social network of these recent immigrants, 

which was largely determined by place of origin in Ireland and neighborhood in New York, turns out to be the 

prime determinant of behavior. Duflo and Saez (2002) discover that individual’s decision to enroll in particular 

employer-sponsored retirement plans and the choice of the mutual fund vendor are affected by the choices of his 

                                                        
6 When n = 2 or 3 the proposition is trivial. 
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co-workers. Cohen, Frazzini, and Malloy (2008, 2010) respectively find that mutual fund managers and sell-side 

analysts gain a comparative information advantage through their social networks; specifically, through educational 

ties with senior officers and board members of the firms. 

4.2 Market Patterns and Expected Profit 

In this subsection, we demonstrate the remarkable effects of communication and confidence degree on 

market trading patterns and agent’s expected profit. Proposition 2 is crucial for its intuitive appealing in 

understanding the main results. 

Proposition 2 In the circle network, precision of the network signal ir  is strictly higher than that of the 

private signal is  when confidence degree (0, 1), and it is strictly decreasing in (0, 1] for each agent

 i . 

Recall the expression of network signal (8) when (0, 1), the i.i.d. nature of noise terms in private signals, 

after weighted by confidence degree and linearly aggregated together, naturally make the network signal to be 

more precise than any private signal regarding the asset value. The monotonicity result comes from two facts. 

First, in an agent’s network signal, the -dependent weights of signals of her left side neighbors are ranked in a 

descending order; Second, the -dependent weights sum up to one. Therefore when confidence degree increases, 

these weights vary over a broader range which cause the network signal to be more volatile, or equivalently, less 

precise. 

We are interested in the implications of information communication and confidence degree on market 

patterns such as market liquidity, expected trading volume, price volatility and price efficiency. The market 

liquidity is captured by . Total trading volume V  aggregates trades that are crossed between traders, informed 

or uninformed, and net demand presented to the market-maker, thus it is defined by 

1

1

2

n

i
i

V x u w
=

æ ö÷ç ÷ç= å + + ÷ç ÷ç ÷çè ø
   

                          

(16) 

Where the coefficient 1/2 corrects the double counting when summing trades over all traders. Price volatility 

is the variance of equilibrium price p . Price efficiency, or informational efficiency (informativeness) of price is 

either measured by the posterior precision of v  or the residual variance of v , conditional on equilibrium price

p  (or order flow w ). They are informationally equivalent so we adopt the first. Additionally, we also study the 

impact of communication and confidence degree on an agent’s unconditional expected profit. 

Proposition 3 When n 1, market liquidity, expected trading volume, price volatility and price efficiency in 

the circle network are strictly higher with communication than without. Moreover, when n  2, they are strictly 

decreasing in confidence degree (0, 1] in the presence of communication. 

The intuition for the first part is as follows. Agents trade more aggressively simply because they can exploit 

more available information which is also more precise regarding asset value. Information communication causes 

prices to be more sensitive to changes in agents’ private signals and less sensitive to changes in noise traders’ 

demand. The market-maker realizes that agents trade more intensely and accordingly moves price less in response 

to changes in order flow than he would if agents abstain from communication. In other words, he flattens the 

supply curve, therefore increasing market liquidity. Because communicating agents trades more in response to 

private signals, their expected trading increases relative to that of noise traders. Consequently the signal-to-noise 

ratio in total order flow increases and the market-maker is able to make better inference about agents’ signals. The 
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price he sets then varies more in response to changes in private signals which increases the price volatility. From a 

different perspective, although the market-maker has flattened the supply curve, thus dampening volatility for any 

given level of expected order flow, the increased order flow generated by communicating agents more than offsets 

this dampening, and results in increased volatility. At the same time, the better inference enables the market-maker 

to form a more accurate posterior expectation of asset value and to set price that is, on average, closer to asset 

value. The informativeness or efficiency of prices is thus improved. 

This analysis reveals that communicating agents trade more aggressively relative to isolated agents, whatever 

the confidence degree of the former, is the key to understand the comparative statics of market trading patterns. 

The monotonicity result of the second part comes from the mechanism given in Proposition 2. A higher 

confidence degree of communicating agents leads to relatively less accurate network signals, which impair agents’ 

assessment of asset value. As a consequence they trade cautiously, thereby market liquidity, price volatility and 

price efficiency become smaller. The monotonicity result does not hold when n = 2, since when information is 

transmitted between two agents, each agent can infer other’s private signal directly. Consequently, plays no role 

in affecting agent’s trading behavior and market patterns. 

The tremendous trading volume in financial markets is a challenge to the no-trade theorem developed by 

Milgrom and Stoky (1982) in that differences in information alone cannot explain the observed levels of trading 

volume. Several motives have been extensively explored in the literature. The competitive and strategic noisy 

rational expectations models, pioneered by Grossman and Stiglitz (1980) and Kyle (1985) respectively, 

demonstrate that private information and noise (liquidity) trading are the major motive for trade. Although noise 

trading is not necessarily irrational, ascribing the enormous trading volume to noise trading is unappealing 

theoretically and empirically. Our model suggests that once information communication is considered, the burden 

for the required level of noise trading can be lessened. More recently, heterogeneous prior beliefs has been 

proposed as another significant motive for trade. The high levels of trading volume in Harris and Raviv (1993) 

and Kandel and Pearson (1995) arise from differences of opinion about an asset value, while in Odean (1998) and 

Wang (1998) they are attributed to agents’ overconfidence in private signal’s precision. Our information 

communication explanation can accommodate these motives, thus help us to better understand the trading 

phenomena. The recent burgeoning of stock message boards also provides supportive evidence reviewed earlier. 

Our model’s predications are consistent with these findings. 

Communication is a sociological need for human being. In many cooperative contexts communication brings 

welfare improvement. Nonetheless, do agents gain from information communication when they are strategically 

competing against one another? The answer is not crystal clear. Communication is beneficial as well as costly. 

Agents are able to better assess the asset’s risk due to more precise network signals, but they lose monopoly on 

private signals simultaneously. Proposition 4 reveals that the latter outweighs the former in the circle network. 

Proposition 4 When n  1, an agent’s unconditional expected profit in the circle network is lower with 

communication than without. Moreover, when n  2, it is strictly increasing in confidence degree (0, 1]. 

A key element underlying this welfare impairment result is that agents are risk neutral. To such agents the 

advance in risk assessment is not very attractive. Additional more accurate information generated from 

communication, accompanied by less monopoly on private signals, leads to more intense competition among 

agents which helps the market-maker to better infer the asset value, thus equilibrium price is on average set closer 

to the asset value. Consequently, each agent suffers from the communication. This intuition is echoed by the 
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second part of this proposition. Agents are relatively better off even though higher confidence degree of private 

signal makes the network signal to be less precise. 

This result raises the concern that information communication in financial markets is undesirable and the 

circle network cannot be established in the very beginning. Such pessimistic conclusion is nonetheless too hasty. 

As pointed out by Hong, Kubik and Stein (2004), agents get pleasure from conversation about financial markets 

with friends who are also fellow participants. Moreover, if agents are risk averse, the benefit of communication 

may exceed its cost. On the one hand, the advantage of more precise network signal, favored by risk-averse agents, 

may dominate the monopoly loss in private signals. On the other hand, risk-averse agents generally trade 

cautiously so market-maker gains less informational advantage, resulting in a wider profit margin. This effect is 

strengthened when the number of agents is small, or equivalently, the competition is less intense. Indeed, Eren and 

Ozsoylev (2006) use numerical solution to formalize these observations in a two risk-averse agents Kyle model. 

We choose to study the risk-neutral case because of its analytical clarity. 

5. Trading in Star Network 

We next consider a new financial network in which information communication structure is represented by a 

star graph. The information structure is similar to what is introduced in section 3, except that one agent, 

conveniently labeled as agent 1, receives additional information and is surrounded by other n−1 disconnected 

agents who do not participate in information communication. To fix notations, agent1 has a private signal 1s  and 

receives signal 1 0r v     . For simplicity we assume that 0 (0, )N    and 0 1, , i      for  \ 1i N  are 

identically and independently distributed. Moreover, 0,v   and u  are mutually independent. 

The central agent 1 truthfully transmits a linear combination of 1s  and 1r  to all other peripheral agents 

prior to trading in a similar manner specified before: 

 ( ) { }  1 11 ,  1 , 0,1 .ir s r iq q q é ù= + - ë û  
            (17) 

The weight  reflects the central’s confidence degree of her private signal and is assumed to be known to the 

peripherals. Clearly  = 1/2 causes ir  to be the sufficient statistic of 1s  
and 1r , but the central agent may 

choose  > 1/2 because of a personal attachment of her private signal. Figure 2 depicts the flow of information 

transmission in the star network. 

This modeling device captures in a stylized way a number of real-life situations. First, the central agent may 

choose to share information simply because of legal requirements. For instance, the SEC requires public traded 

company to fully disclose corporate events information that will affect stock’s subsequent performance. Still, in 

practice company has discretion to display distinct information with different emphases. Second, financial 

analysts or some information gurus who are willing to communicate their information from multiple sources have 

a large audience not only in traditional financial press and media but also in virtual worlds such as Internet stock 

message boards. 
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Figure 2  Information Transmission in the Star Network 

Note: The set of linked nodes represents social communication among agents. Arrows indicate the direction of 

information transmission. For all i∈N\{1}, in addition to private signal is , peripheral agent i receives “synthetic” 

signal ir  about the risky asset’ value from central agent 1. 

 

Using subscript   to denote the star network, the equilibrium is similarly defined as Definition 1 except 

that ( )1 1 1,s r=    and ( ) ,i i is r=    for { }   1i  where ir  is defined in (17). Assuming symmetric 

linear trading strategies among peripheral agents, we have: 

Theorem In the star network, there exists a unique linear equilibrium  
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Where the trading intensity parameters a ,b ,g  and d , and the liquidity parameterl are given by 
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Where ( )1q qQ = - , and the full expression for a, b, c, d, e, f and g are given explicitly in the Appendix. 

The second order condition 0   is satisfied. 

A prominent feature of the central agent’s equilibrium trading strategy stands out. After transmitting a 
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positive and linear combination of her private and received signals, she may optimally select a trading strategy in 

which one trading intensity coefficient is possibly negative. For instance, fix variance parameters, when the 

central agent integrates a high confidence degree of her private signal in information transmission, the peripherals 

can better assess and exploit the central’s private signal. At the same time if the number of the peripherals is large 

so that competition is very intense, the central may gain by choosing a negative trading intensity on her private 

signal. 

We can address the relation between agents’ proximity and correlation of their demands again if information 

communication structure can be broadly represented by multiple identical but disjoint star networks. It is easily 

shown that the correlation of demands of agents in the same star is larger than the correlation of demands of 

agents located across different stars. In other words, the correlation of agent demands is decreasing in their 

proximity. 

5.1 Private Signal’s Social Influence 

We are concerned about the influence of one agent’s private signal on other agents’ trading behavior and 

equilibrium asset price. Apparently, in the circle network each agent’s signal’s influence is symmetric and 

identical. When information is asymmetrically transmitted in the star network, this property is altered significantly. 

For example, Ozsoylev (2004) shows that, when a star network is introduced into Hellwig (1980), the influence of 

a central agent’s signal on equilibrium price is infinitely large when the number of peripheral agents approaches 

infinity. However, this is not the case in our model. 

Proposition 5 In the star network, the central agent’s private signal has a greater influence on equilibrium 

price than any other peripheral agent’s signal. However, the influence ratio is finite for all n > 1. That is, for all 

realized private signals and equilibrium price, we have 
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/ i
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Intuitively, each peripheral agent in our model, who cannot observe the equilibrium price, takes into account 

the fact that the central agent’s synthetic information is also utilized by others, she thereby optimally underreacts 

to this received signal, especially when the number of the peripherals is large. The influence of the central’s 

private and received signals is controlled deliberately by the peripherals’ trading intensities choice. While all the 

peripherals in Ozsoylev (2004) trade competitively without the same strategic consideration so that each exploits 

the received signal up to her risk aversion and signal precision. As the number of the peripherals goes to infinity, 

the central’s private signal is absorbed into the equilibrium price without bound.7 

Ozsoylev (2004) nicely remarks that competitive trading in the star network provides a possible explanation 

for the large price swing, like bubble or crash, in financial markets without prior significant change in 

fundamentals. However, our finite influence ratio result seems to be more plausible, as any single agent’s 

influence on financial markets is reasonably limited. 

5.2 Market Patterns and Expected Profit 

The intuitive Proposition 2 in section 4.2 helps us to understand individual trading behavior and market 

trading patterns in the circle network. Analogously, in the star network we have a similar result. 

Proposition 6 In the star network, precision of the network signal ir  is strictly higher than that of is  

                                                        
7 Ozsoylev (2004) also assumes that the variance of liquidity trading goes to infinity in order to separate the role of social interaction 
from the role played by price. In our model the level of noise trading does not matter for this result. 
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when confidence degree  (0, 1) for each agent i N\{1}, and it is strictly decreasing (increasing) in [1/2, 

1]([0, 1/2]). 

For our purpose we will focus on the case [1/2, 1] in the following analysis. 
We have seen that a private signal’s influence on price changes drastically when communication takes place 

in different networks. Is this the same case for market trading patterns as summarized by market liquidity, trading 

volume, price volatility and price efficiency? The answer is no. 

Proposition 7 When n > 1, market liquidity, expected trading volume, price volatility and price efficiency in 

the star network are higher with communication than without. Moreover, they are strictly decreasing in confidence 

degree [1/2, 1]. 

When a peripheral receives a more accurate network signal from the central, on average agents as a whole 

trade more intensely. The market-maker infers information and sets price in similar way as described in section 

4.2. We conclude that regardless of network structures, information communication generates market trading 

patterns more similar to what are observed in practice than implied by no communication economy. The 

monotonicity result is a direct consequence of Proposition 6. 

As above, we turn to examine agents’ unconditional expected profits. 

Proposition 8 Unconditional expected profit of the central agent in the star network is lower with 

communication than without, and it is strictly increasing in confidence degree [1/2, 1]. The opposite is true for 

that of peripheral agents. The total expected profits are lower relative to those in the no communication economy. 

Intuitively, by spreading the synthetic information, the central agent loses monopoly on her private 

information. If she chooses not to do so, her expected profit is apparently higher than that of a single peripheral 

agent since she has an additional and exclusive information. The peripherals compete against one another and 

against the central agent not only on the common received signal but also on their own monopolistic private 

signals. Roughly, the received signal helps them earn higher expected profit than what is delivered in the no 

communication economy, and their exclusive private signals ensure them to gain more relative to the central agent. 

Unfortunately, the peripheral’s total gain is dominated by the central’s loss, and it is not possible to construct a 

compensation scheme between the central and the peripheral agents to have everyone better off. However, as we 

argued above, when agents are risk aversion of when they have other considerations, the information 

communication can make everyone happier. Interestingly, Ozsoylev, Walden, Yavuz, and Bildik (2014) find 

empirical evidence that central investors earn higher returns and trade earlier than peripheral investors with 

respect to information events, which can be rationalized by a two-period trading model. 

6. Communication and Overconfidence 

In the circle network, Proposition 2 demonstrates that when an agent is more confident in private signal prior 

to trading, the resulting more volatile network signal makes private signal, whose variance is actually unchanged, 

to be relatively more precise. The same is true in the star network when the central agent’s confidence degree is in 

the range [1/2, 1]. These properties make our modeling of confidence to be comparable with that of 

overconfidence because the latter is usually captured by an agent’s tendency to overestimate the precision of 

private signal and underestimate that of others or public information. In other words, when an agent exhibits high 

confidence degree or when she displays overconfidence in private signal, the effects on signals’ relative precision 

are alike. Odean (1998), Wang (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Gervais and Odean 
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(2001) show that, in different extensions of Kyle (1985) without communication, market liquidity, expected 

trading volume, price volatility and price efficiency are all higher while an insider’s expected profit is lower when 

she is overconfident in her private signal. More significantly, in their models these market patterns are strictly 

increasing in the insider’s overconfidence degree, and the reverse is true for the expected profit. The intuition is 

straightforward, when an insider is more overconfident in private signal, she trade more intensely. The reasons of 

higher market liquidity, price volatility and price efficiency are similar as outlined in section 4.2. The insider’s 

expected profit decreases simply because her demand is suboptimal.8 These comparative statics are directly 

opposite to Propositions 3 and 4 in the circle network when (0, 1], and are again distinct from Propositions 6 

and 7 in the star network when  [1/2, 1]. 

The impacts of overconfidence on investors’ trading behavior and welfare have been examined extensively. By 

studying position statement and trading activity for a large sample of households, Barber and Odean (2000) discover 

that those that trade most earn the lowest annual return. After considering other possible motivations for trading such 

as liquidity, risk-based rebalancing, and taxes, they attribute high trading levels and the resulting poor performance to 

individual investors’ overconfidence. In subsequent studies, Barber and Odean (2001) document that men trade more 

than women but trading reduces men’s net annual returns by more percentage points as opposed to that for women. 

Barber and Odean (2002) report that when investors switch from phone-based to online trading, they trade more 

actively and less profitably than before. These patterns are consistent with the findings by Antweiler and Frank 

(2004a, 2004b). For the former, they cite psychological research that men are more overconfident than women in 

areas such as finance. For the latter, they explain that online investors perform well prior to switch, therefore are 

more overconfident in their abilities in the new trading platform. As online investors have access to vast quantities of 

investment date, their illusions of knowledge and control further foster their overconfidence. 

Interestingly, these empirical findings can be alternatively account for by the implications of information 

communication. Casual observation and anecdotal evidence suggest that relative to women, men are more prone 

to exchange news regarding asset performance and wealth accumulation. Similarly, it is routine for online traders 

to participate in information sharing and discussion on Internet stock message boards. Our model predicts that 

information sharing leads to excessive trading and return performance impairment. 

Apparently, information communication and overconfidence explanations are largely complementary in 

explaining market trading patterns and individual profits. But in some aspects they are also competing against 

each other. In particular, earlier psychological experiments, requiring participants to respond to questions in 

isolated environment, seldom consider the communication and peer effects in affecting their confidence degrees, 

while recent redesigned experiments have documented that the agent’s underconfidence is also prevalent in 

decision making (Klayman, Soll, González, & Barlas, 1999). Prompted by these findings, Xia (2014) provides 

reasonable conditions that excessive price volatility, high trading volume and price informativeness can be 

associated with underconfidence in a competitive economy à la Hellwig (1985). García, Sangiorgi and Urošević 

(2007) show that, when overconfident and rational agents coexist and information is endogenously acquired, 

agent’s overconfidence is irrelevant to price volatility under certain conditions. Glaser and Weber (2007) also 

question the connection between overconfidence and trading volume by examining experimental data and field 

data together. In light of these, future research can be directed to test the validity and robustness of information 

communication and overconfidence theories. Interestingly, Xia (2012) shows that, when facing trade disclosure 

                                                        
8 Their conclusions can be extended to the case in which the single overconfident insider is replaced by multiple ones. 
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requirements, overconfident insiders trade less than underconfident ones in order to prevent information from 

revealing to market-makers. This result again questions the conventional wisdom that overconfident insiders 

always trade more aggressively. 

7. Concluding Remarks 

Recently a remarkable amount of empirical research has concentrated on testing the implications of 

information communication in financial markets, surprising though this body of work has elicited little in terms of 

theoretical work. We extend Kyle (1985) by introducing one-way direct and truthful information transmission in 

the circle and star networks. Despite the restrictive modeling choice, this endeavor is encouraging as the model 

generates implications that are consistent with empirical findings from individual trading behavior to market 

trading patterns. In our paper, the comparative statics of investors’ confidence degree on market trading patterns 

and individual welfare are contrary to those of overconfidence literature, therefore further scrutiny of 

communication and overconfidence explanations using empirical data is needed to enhance our understanding. 

Several directions of further research await exploring. On the empirical side, it is interesting to examine the 

time series and cross sectional implications of information communication in asset prices. For instance, a rise in 

volatility among publicly traded companies has been documented. Is this an outcome that during last few decades 

the attention of news media and financial press were more in favor of publicly traded companies? 

On the theoretical side, some key questions are in order. First and foremost, as pointed out earlier, 

incorporating information communication into Kyle (1985) has the advantage that the effect of communication on 

trading can be distinguished from the information aggregation role played by equilibrium price. A limitation of the 

analysis is that agents’ non-strategic information communication prior to trading appears to be at odds with their 

strategic use of information afterwards. The analysis would be more illuminating if the incentive compatibility of 

information communication can be characterized in the strategic rational expectation framework. The 

aforementioned voluntary disclosure literature may help fill the gap and we plan to delve into it in the next 

project.9 Second, the synergy of network economics and finance is a new and promising area. Information 

communication, or other sociological traits of trading behavior in social network, may raise a lot of unexplored 

questions. For instance, what are the asset pricing implications if investors are more inclined to share good news 

and withhold bad news, or vice versa? The investigation shall shed light on our understanding of other puzzling 

phenomena in economics and finance. 
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Appendix  Proofs of Main Results 

Proof of Theorem 1 When proving the theorem we do not have to treat cases (0, 1) and  = 1 separately. Only the 

distribution of ir  
is relevant in maximization and the distribution of ir  when  = 1 is the limit of that when  (0, 1). The proof 

has three steps. 

Step one: Agent i, taking (thm1a) with subscript j i¹  , and (thm1b) as given, chooses ix  to solve: 

( )max , ,
i

i j j i i i i i
x j i

x v s r x u s s r rl a b
¹

æ é æ öù ö÷ ÷ç ç- å + + + = =ê ú÷ ÷ç ç ÷ ÷ç çè è ø øê úë û
           

which is equivalent to (def1a) with ( ) ,i i is r=  and can be rewritten as 

( ) ( ) ( ) ( )  max 1 1 | , | , | , .
i

i i i i j i i j i i
x j i j i
x n v s r x s r r s rl a l l a e l b

¹ ¹

æ ö÷é ùç - - - - å - å ÷ç ë û ÷çè ø
            

The solution is given by 

( ) ( ) ( ) ( )  1 1
1 1 | , [ | , | , ].

2 2i i i j i i j i i
j i j i

x n v s r s r r s rl a a e b
l

*

¹ ¹
é ù= - - - å + åë û    



    

The second order condition is 0l > . 

Because all random variables are normally distributed with zero means, by the Projection Theorem, there exist constants a1, a2, 
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b1, b2, c1 and c2 such that:  

( ) 1 2| , ,i i i iv s r a s a r= +                                  (A1a) 

( ) 1 2| , ,j i i i i
j i

s r b s b re
¹
å = +                                (A1b) 

( ) 1 2| , .j i i i i
j i

r s r c s c r
¹
å = +                                (A1c) 

The equilibrium dictates  

( ) ( ) ( ) ( )1 21 1 2 21 1 1 1
 and ,

2 2 2 2

n a n ab c b cl a l aa b a b
a b

l l

é ù é ù- - - -+ +ë û ë û= - = -      
 

 
 

therefore we have 

 and ,
A B

a b
l l

= = 
 

                                      (A2) 

Where  

( )
( ) ( ) ( )

1 2 2 1

1 1 2 2 2 1

2
,

2 1 2 1

a c a c
A

b a n c b a n c

+ -
=

é ù é ù+ + - + - + -ë û ë û
               (A3a) 

( )
( ) ( ) ( )

2 1 1 2

1 1 2 2 2 1

2
.

2 1 2 1

a b a b
B

b a n c b a n c

+ -
=

é ù é ù+ + - + - + -ë û ë û
            (A3b) 

Note that A and B are independent ofl . 

The pricing rule set by the market-maker must satisfy (2). Taking (11) as given, (12) satisfies (2) if  

( )
( )

( )
( ) ( )2 22

,
.

cov v n

var n n

w a b
l

w a b a b

+ S
= =

+ S+ + F +W

  


    

 


 

Substituting in for  and  given by (A2) yields 

( ) ( ) ( )2 22

.
n A B n A B n A B

l

é ù+ - + S- + Fê ú
ë û=

W                       (A4) 

Step two: The expression of network signal is  

( )
( )

( )
1
0 1

1

1
, when 0,1 ,

1 1

,  when 1.

kn
k i k

i n

i i

r v

r s

q q e
q

q
q

-
= + +

+

-å
= +

- -
= =




 

 

Define V to be the variance-covariance matrix of vector 
T

i is ré ù
ê úë û  , for  (0,1]q , 

( )
( )

( )
( )

( )
( )

1

1

1

1 1

1 1 1

21 1 1 1

.

n

n

n n

n n

V

q q

q

q q qq
qq q

-

-

-

- -

- + -

-- - - -

é ù
ê úS + F S + F
ê ú

= ê ú
ê úS + F S + Fê ú
ê úë û

 

For ease of notation, define  
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( )
( )

1
1 1

 and ,
1 1

n

n
C D V

q

q

-
- -

= F =
- -

                          (A5a) 

i.e., D is the determinant of V. 

Next we show that the unknowns in (A3a) and (A3b) are as follows.  

1 2,    ,
2

C C
a a

D D

q
q

= S = S
-

                                       (A6a) 

( )
( )

( )
1

1 2

1
,    ,

1 1

n

n

C C
b b

D D

q q

q

-é ù-ê ú
= - S + F = S + Fê ú

ê ú- -ê úë û

              (A6b) 

( ) ( ) ( )
( )

1

1 2

2 1 12
,    .

2 2 2 1 1

n

n

C C
c n c n

D D

q q qq
q q q q

-é æ ö ù÷æ ö - -çê ú÷ç÷ç ÷= S + F = - S + - F÷ çê úç ÷÷ ç÷ç ÷- - -è øê úç ÷÷ç - -è øê úë û

 (A6c) 

Note that the unknowns in (A3a) and (A3b) are coefficients in (A1a)-(A1c). Applying the Projection Theorem to (A1a), we have 

( ) | , ,
2i i i i

C
v s r s r

D

q
q

æ ö÷ç= + S÷ç ÷÷ç -è ø
  

therefore we obtain (A6a). 

Second, we can show that 

( ) ( )
( )

( )
( )

( )

1

1

1

1 1

1

1 1

if 10 if
,  and  , .

if
if

n j i

n

j i

n

j i j i

j ij i
cov s cov r

j i
i j n

q q

q

q q

q

e e

+ - -

- -

-

- -

-

- -

ìïï F £ £ïì ¹ï ïï ï= =í íï ïF =ï ïî F < £ïïïî

          (A7) 

Applying the Projection Theorem to (A1b), 

( ) ( )
( )

( )
1

1
| , ,

1 1

n

j i i i inj i

C
s r s r

D

q q
e

q

-

¹

é æ ö ù÷-çê ú÷ç ÷å = - S + F + S + Fçê ú÷ç ÷ê úç ÷÷ç - -è øê úë û

  

we thus obtain (A6b). 

Finally, we can show that  

( )
( )

( )
( )

( )

1

1

1

1 1

1

1 1

if 1
, ,

if

i j

n

n i j

n

j i

j i
cov r s

i j n

q q

q

q q

q

- -

+ - -

-

- -

-

- -

ìïï S + F £ <ïïï= íïïS + F £ £ïïïî

                        (A8) 

( )
( ) ( )

( )
( ) ( )

( )

1 1

2 1 1

1 1

2 1 1

if 1
, .

if

i j n j i

n

j i n i j

n

j i

j i
cov r r

i j n

q qq
q q

q qq
q q

- + -

- + -

- + -

- - -

- + -

- - -

ìïïS + F £ £ïïï= íïïS + F £ £ïïïî

            (A9) 

Applying the Projection Theorem to (A1c),  

( ) ( ) ( ) ( )
( )


1

2 1 12
| , ,

2 2 2 1 1

n

j i i i inj i

C C
r s r n s n r

D D

q q qq
q q q q

-

¹

é æ ö ù÷æ ö - -çê ú÷ç÷ç ÷å = S + F + - S + - F÷ çê úç ÷÷ ç÷ç ÷- - -è øê úç ÷÷ç - -è øê úë û

  
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we thus obtain (A6c). 

Step three: Now it is ready to capture the algorithm for calculating trading intensity parameters ,a b   and liquidity 

parameter l . We first calculate A and B, defined in (A3a) and (A3b), by substituting (A5a)-(A6c), then l  follows from (A4). 

Second we get a and b  from (A2). Very lengthy algebra yields the final results given by (13)-(15) in the main text. Next we 

examine the second order condition. Observe that 

( ) ( ) ( )( )
( ) ( ) ( )( )

1

1

2 1 1 2 1 1 [1 1 ]
,

2 1 1 1 [ 3 2 1 2 ]

n n n

n n

n

n

q q q q
l

q q q q

-

-

é ù é ù- - - - S+ + - Fê ú ê úS ë û ë û=
é ùW + - - S+ - - + + Fê ú
ë û


 

because n > 1, (0, 1] and ( )( ) ( ) ( ) 1
3 2 1 2 2 1 1 [1 1 ]

n n n
q q q q q q

-é ù- - + + = - - + + -ê úë û
, thus 0l >  is 

satisfied. 
Proof for Proposition 1. The proof for the first part is provided in the main text. For the second part, since

( ) ( )i i jvar x var x+ +=    for any   and j, by definition of ( ),i icorr x x +     we only need to examine the 

covariance term, that is, 

( ) ( ) ( ) ( ) ( )2 2, , , , ,i i i i i i i i i icov x x cov s s cov s r cov s r cov r ra a b b+ + + + +
é ù= + + +ë û                      (A10) 

Note the results (A7)-(A9) in the proof of Theorem 1. We have 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

1

1

1
, ,

1 1

1
, ,

1 1

1 1
, .

2 1 1

n

i i n

i i n

n

i i n

cov s r

cov s r

cov r r

q q

q

q q

q

q qq
q q

- -

+

-

+

-

+

-
= S + F

- -

-
= S + F

- -

- + -
= S + F

- - -









 



 

 

 

 

Substituting these covariance terms and ( ) ( )/ 2a qb q= -   into (proximity) and examining the terms involving  , we 

only need to show  

( ) ( )1 1
n

q q
-

- + -
 

 

is strictly decreasing in integer  (0, / 2]n . Apparently, this is the case. For  i , 4n ³  and

1 / 2j n£ < £ , we have ( ) ( ), ,i i i i jcorr x x corr x x+ +>        . The symmetry leads to

( ) ( ), ,i i i icorr x x corr x x- +=         , hence for 1 / 2j n£ < £ , we have 

( ) ( ), , .i i i i jcorr x x corr x x+ +>         

This completes the proof. 

Proof for Proposition 2. To see that the precision of ir  is strictly higher than that of is for  i , it suffices to show 
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( ) ( )
( )
( )

( )
( )

( )
( )

1 1

2 1 1

1 1 1 1
1.

1 11 1

i i
n

n

n

n

var r var s

qq
q q

q q

qq

<

+ -
 S + F < S + F

- - -

- - + -
 <

+ -- -

 

                            (A11) 

(All) holds naturally since given (0, 1) and n > 1, we have( )1 1
n

q q- < - . 

To prove the precision of ir  is strictly decreasing in (0, 1], notice that we have shown that the precision of ir  when (0, 

1) is higher than that when  = 1. We only need to show 
( )
( )

1 1

2 1 1

n

n

qq
q q

+ -

- - -
 is strictly increasing in (0, 1). Equivalently, we can 

verify
( )
( )

1 1

2 1 1
log

n

n

qq
q q

+ -

- - -

é ù
ê ú
ê úë û

 is strictly increasing in (0, 1). This requires 

( )
( )

( )
( )

1 1
1 11 1

0.
2 1 1 1 1

n n

n n

n nq q

q q q q

- -
- -

+ - - >
- + - - -

 

Simplifying it leads to 

( ) ( )( )2 1
1 2 1 1.

n n
nq q q q

-
- + - - <  

Let 1h q= - , manipulation yields  

1 .
n n

n

h h
h h

-
--

> -
                                    

(A12) 

Given ( ) 0,1h , it is ready to see that the left hand side of (A12) as a function of n is strictly increasing in 0n > , so 

the last inequality holds when 1n > . 

Proof of Theorem 2. The proof consists of two steps. 

Step one: Central agent 1, taking (19) for 1i ¹ , and (20) as given, chooses 1x  to maximize 

( ) ( ) ( ) ( )( ) ( )            
1 1 2

1 1 1 1 1 1 1 1 1
2

,  1 1 1 1
2

n

i i
i

s r
x v x s r u s r n x n s r x xl g d l g l d q q l

=

æ é æ öù ö S +÷ ÷ç çê ú÷ ÷ é ù é ùç ç- +å + + = - - - - + - -÷ ÷ç çê ú ë û ë û÷ ÷ç ç S+F÷ ÷ç çê úè è ø øë û
   

  

(A13) 

because 

( ) ( ) ( )  1 1
1 1 1 1| , | , .

2i

s r
v s r s s r

S +
= =

S + F
 

                         
(A14) 

The second order condition is  0l > . 

Peripheral agent 1i ¹ , taking (18), (19) with subscript 1j >  and j i¹ , and (20) as given, chooses ix to maximize 
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( )
( ) ( ) ( )

( ) ( )



  

 

      

     

   

1 1
1,

2
1 1 1

1, 1,

,

 | , | , | ,

| , | ,

i i j j i i j
j j i

i i i i i i i i

i j i i j i i
j j i j j i

x v s r x s r u s r r

x v s s x x s s r r s r

x s s r r s r

l a b g d

l l a b

l g d

> ¹

> ¹ > ¹

æ é æ öù ö÷ ÷ç ç- + + + å + + =ê ú÷ ÷ç ç ÷ ÷ç çè è ø øê úë û
é ù= - - +ë û

é ù
- å + åê ú

ê úë û

     

  

 
           

(A15) 

The second order condition is  0l >  . 

Define 

( )1 ,q qQ = -  

because of (17), 

( )1 11 ,ir s rq q= + -    

applying the Projection Theorem, we have  

( ) ( ) ( ) ( )
( ) ( )

( )

  


1

1 2
| , | , | , ,

2 1 1 2

| , .

i i
i i i i j i i

j i i i

s r
v s r r s r s s r

r s r r

é ùS - Q +ë û= = =
-Q S + - Q F

=

  


 

Solving (A13) and (A15) and imposing equilibrium requirement yields  

( ) ( )

( ) ( )( )

( ) ( )( )
( ) ( )

( )( )
( ) ( )

( )

  




  




   




    




1 1 11
,

2 2 2
1 1 1 11

,
2 2 2

1 2 1 21
,

2 2 1 1 2

1 2 21
.

2 2 1 1 2 2

n n

n n

n

n n

l g d q
a

l
l g d q

b
l

l a b g
g

l
l a b g d

d
l

é ùS - - -ë û= -
S + F

é ùS - - - -ë û= -
S + F

é ù- Q S - + + -ë û=
-Q S + - Q F

é ùS - + + - -ë û= -
-Q S + - Q F

 

Manipulation leads to (24), i.e., ( )



2

1 2n

gd
- Q

=  and 

( ) ( )( )

( )
( ) ( )

( )
( ) ( )

( )










2

2 2

2

2 2

2 2

2 1 2 1 2 1 1 21
,

2

2 2 3 2 2 1 11
,

2

1 21
,

n n

e f g

n n

e f g

n

e f g

q q q q q
a

l

q q q q q
b

l

g
l

é ù é ù- + + S + - - + Fê ú ë ûë û=
S + SF + F

é ù- + S + - - + Fë û=
S + SF + F

- Q S S + F
=

S + SF + F

           (A17) 

where 

( ) ( ) ( )( ) ( )1 1 2 2 ,  4 1 2 1, and 2 1 2 .e n n f n n n g né ù= + - Q + = + - Q + + = - Që û  

Taking (18) and (19) as given, the market-maker knows that ( )    21 1
n
i is r s r uw a b g d== + + + +å      and sets 

l  in the familiar manner. Substituting in for a , b , g  and d  as given in (A17) and (24) yields (25) in the main text: 
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( )
( ) ( )






3 2 2 3

2 2

,
,

2

cov v a b c d

var e f g

w
l

w
S S + S F + SF + F

= =
W S + SF + F

 


 

where 

( )
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )( )

2

23 2 2

23 2 2

2

2 1 2 2 ,

6 1 2 4 3 11 4 4 4 3 4 5,

6 1 2 8 3 4 1 4 2 3 4 ,

2 1 2 2 1 2 1 .

a n n

b n n n

c n n n

d n n n n

é ù= - Q +ë û
= - Q + Q - Q + + - Q + Q-

= - Q + Q - Q + + - - Q
é ù= - Q - + Q + -ë û

 

Step two: We obtain (21)-(23) in the main text from (A17) and (25). Finally we show that  0l >  is satisfied. First note that 

1n > and ( )0 1 1/ 4q q£Q= - £ , so1 2 1 / 2- Q ³  and the constants e, f, and g are strictly positive. Secondly, it 

is easy to show the constants a, b, c and d given in are strictly positive. In particular, 0b >  follows from

23 11 4 23 / 16Q - Q+ ³ , 4 3 13 / 4- Q ³  and ( ) ( )4 4 3 4 5 4 4 3 4 5 11 8 9n - Q + Q- > - Q + Q- = - Q³ . 

0c > follows from 23 4 1 3 / 16Q - Q + ³ , and 3 4 2- Q ³ , and 0d >  follows from

( ) ( ) ( )2 1 1 / 2 1 / 2 0n n n n n- + Q ³ - + = - > . 

Proof of Propositions 3-8. We need to first compute market liquidity, expected trading volume, price volatility, price efficiency 

and an agent’s unconditional expected profit with and without communication, then we make a direct comparison. The details can be 

found from the author’s personal website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


